

Show Control User's Guide

 V16+, V2+
 16 Channel & 2 Channel Show Controllers

 IO64
 Intelligent I/O Expander

 DMX Machine
 Scripted Lighting Controller

 SMPTE Machine
 SMPTE Reader and Generator

User's Guide To

Show Control

by Alcorn McBride Inc.

Document Revision 3.3

Document Number 110-100353.55

January 23, 2014

Copyright 1986-2014 Alcorn McBride, Inc. All rights reserved.

Every effort has been made to assure the accuracy of the information contained

in this manual, and the reliability of the hardware and software. Errors

sometimes can go undetected, however. If you find one, please bring it to our

attention so that we can correct it for others.

Alcorn McBride Inc. reserves the right to make changes to these products,

without notice, in order to improve their design or performance.

Applications described herein are for illustrative purposes only. Alcorn McBride

Inc. assumes no responsibility or liability for the use of any of these products,

and makes no representation or warranty that the use of these products for

specific applications will be suitable without further testing or modification.

Our Show Control equipment is not intended for use in applications where a

malfunction can reasonably be expected to result in personal injury or damage to

equipment. Customers using or selling Alcorn McBride Inc. products for use in

such applications do so at their own risk, and agree to fully indemnify Alcorn

McBride Inc. for any damages resulting from such improper use or sale.

Product Design and Documentation:

Steve Alcorn, Martin Chaney, Jim Carstensen, Jeff Long, Jason Crew,

Jim Janninck, Jeremy Scheinberg, David Mayo, Chris Harden, Jonathan

Henline, Scott Harkless, Joy Burke and John Conley.

Alcorn McBride Inc.
3300 S. Hiawassee Rd, Bldg 105

Orlando, Florida 32835
(407) 296-5800

FAX: (407) 296-5801
http://www.alcorn.com

info@alcorn.com

Contents

Welcome 1-1

Installing WinScript ... 1-2
Technical Support .. 1-3
Important Information .. 1-4

Show Control Overview 2-1

What Is Alcorn McBride Show Control? ... 2-2
Alcorn McBride Show Controllers... 2-3
WinScript Tutorial ... 3-5
A Little About Our Show ... 3-6
Opening WinScript and Creating a Blank Script ... 3-7
Customizing the Script ... 3-8
Naming Resources ... 3-9
Inserting and Organizing Sequences .. 3-16
Adding Events .. 3-18
Compiling and Downloading ... 3-22
Running the Show .. 3-22
Summary .. 3-23

WinScript User’s Guide 4-1

Getting Help ... 4-2
Creating, Opening, Closing, and Saving Scripts .. 4-2
Configuring the Show Controller ... 4-3
Version, Author, and Show Description .. 4-4
Inputs, Outputs, Variables, Ports, and Strings .. 4-4
SMPTE Triggering ... 4-9
Using The "Spreadsheet" ... 4-14
Working with Sequences .. 4-14
Editing Sequences .. 4-20
Chasing Timecode with Sequences .. 4-26
Compiling and Downloading ... 4-28
WinScript Tools ... 4-32
Cue List .. 4-32
DMXWizard ... 4-37
WinScript Options .. 4-38

Event Reference 5-1

Types of Events .. 5-2
Internal vs. External Events ... 5-2
Discrete Events... 5-4
Logical Events .. 5-7
Program Control Events ... 5-9

LCD Display Events .. 5-14
Built-In Serial Events ... 5-17
MIDI Events ... 5-22
SMPTE Serial Events... 5-23
LightCue Serial Events .. 5-25
Digital Video Machine Serial Events ... 5-29
Digital Binloop Serial Events... 5-31
Other Serial Device Events .. 5-35

Advanced WinScript Programming 6-1

Introduction .. 6-2
Get Control of Your Sequences ... 6-3
Day and Night Mode .. 6-4
Synchronized Scripting .. 6-5
Modularity.. 6-8
Randomization ... 6-11
Real Time Clock .. 6-14
Communications Between Alcorn McBride Equipment .. 6-16
ESTOPs and Fire Alarms ... 6-19
Frame Accuracy ... 6-19
Power up Conditions .. 6-21
Restart and Restart Lockout ... 6-21
Preventing Glitches .. 6-22
Tight Control and Awareness... 6-23

Application Notes 7-1

Large Theatre Control .. 7-2
Digital Video Machine Control .. 7-19
Using Cue List in a Live Show .. 7-27
Controlling Automatic Doors ... 7-29

V16+ Hardware Reference 8-1

Specifications ... 8-2
Serial Ports ... 8-3
LCD Display .. 8-5
Digital Inputs ... 8-6
Digital Outputs ... 8-11
Video Synchronization ... 8-14
Power Supply ... 8-15
Firmware .. 8-16
Show Memory .. 8-16

V2+ Hardware Reference 10-1

Specifications ... 10-2
Serial Ports ... 10-3
LCD Display .. 10-4
Digital Inputs ... 10-5

Digital Outputs ... 10-9
Power Supply ... 10-12
Firmware .. 10-12

IO64 Hardware Reference 12-1

Specifications ... 12-2
Serial Ports ... 12-3
Digital Inputs .. 12-6
Digital Outputs ... 12-8
Power Supply ... 12-10
Firmware .. 12-10

DMX Machine Hardware Reference 13-1

Specifications ... 13-2
Serial Ports ... 13-3
DMX Output Port ... 13-4
Digital Inputs .. 13-5
Power Supply ... 13-7
Firmware .. 13-7

SMPTE Machine Hardware Reference 14-1

Specifications ... 14-2
Serial Ports ... 14-3
SMPTE ... 14-5
LCD Display .. 14-6
Digital Inputs .. 14-7
Digital Outputs ... 14-11
Video Synchronization ... 14-14
Power Supply ... 14-15
Firmware .. 14-15

Appendix A – Adding User-Defined Serial Protocols 15-1

Creating Your Own Protocol File .. 15-2

Appendix B – Alcorn McBride Serial Control Protocols 16-1

The Basics of Alcorn Control ... 16-2
Alcorn 9 Bit Control ... 16-5
Alcorn 8 Bit Control ... 16-6
MIDI Control ... 16-7

Appendix C – Cable Reference 17-1

Common Show Control Cable Pinouts .. 17-1

Appendix D – Available Accessories 18-1

Components ... 18-1
Manufactured Cables ... 18-2

Third Party Equipment ... 18-3

Index 19-1

Welcome 1-1

 W
e
lc

o
m

e

Welcome

Since the first V16 was introduced, Alcorn McBride Show Controllers have

provided countless users with intuitive, event-driven control of their show. Our

windows-based show programming software, WinScript, takes that power and

versatility to new levels with English-like user-definable commands, new tools

and applications, and intelligent debugging.

This Show Control User’s Guide will guide you in designing and

programming your show using our Show Control Hardware and Software. We

at Alcorn McBride are pleased to provide you with these tools. Good luck, have

fun, and thanks for choosing Alcorn McBride!

In this chapter, you’ll find:

 WinScript installation procedures.

 Show Control documentation and technical support resource listing.

 Important product and warranty information.

1-2 Welcome

Installing WinScript

WinScript is equipped with a Setup program that checks your system and asks a

series of questions about how you want to install WinScript.

Important If you use a virus protection program that may interfere with

software installation, turn it off or override it before running the WinScript

Setup program. Virus protection may be turned back on after setup has

completed.

Installing WinScript from the Internet

The latest version of WinScript can always be downloaded from our web site at

http://www.alcorn.com/support/. From time to time updates and additional

features may become available at this same location. Use the following

procedure to install WinScript:

1. Choose Run… from the Start menu.

2. In the Command Line box, type the name of the WinScript file you

downloaded from the Alcorn McBride Home Page.

3. Choose the OK button.

4. Follow the instructions on your screen to setup or update WinScript.

5. Setup will create an Alcorn McBride heading under the Start Menu.

Welcome 1-3

 W
e
lc

o
m

e

Technical Support
You can obtain information about specifying, installing, configuring, and

programming your Alcorn McBride Show Control product from three sources:

 This Show Control User’s Guide

 Online Help

 Alcorn McBride Technical Support

Both the Show Control User’s Guide and the Online Help assume that you are

familiar with basic Microsoft Windows techniques.

Using This Guide

This guide presents the best way to accomplish tasks found in common (and

uncommon) show control situations. Basic functionality is discussed in detail

in the WinScript User’s Guide, and more interesting and complex show

situations are discussed in the Application Notes. Finally, specific hardware

information for your Show Controller may be found in the Hardware
References.

Online Help

The Show Control Basics Tutorial, WinScript User’s Guide, and Show
Control Event References make up the WinScript Online Help system. All

configuration and setup screens in WinScript have context-sensitive help buttons

that provide functional information on demand. You can also access the help

system from the pull-down menus, or by pressing the F1 key.

Additionally, there are hundreds of answers to frequently asked questions in our

knowledge base, at http://www.alcorn.com/kb

Contacting Technical Support

Several support options are available during the business day, around the clock,

and on weekends:

For… Contact… When?…

E-Mail Support support@alcorn.com Any Time

Knowledge Base http://www.alcorn.com/kb Any Time

Software/Firmware
Updates

http://www.alcorn.com/support

Any Time

Telephone Support (407) 296-5800 M-F 9am–6pm (EST)

Fax Support (407) 296-5801 M-F 9am-6pm (EST)

1-4 Welcome

Important Information
Congratulations! You have purchased an extremely fine Product that would give

you thousands of years of trouble-free service, except that you undoubtedly will

destroy it via some typical bonehead consumer maneuver. Which is why we ask

you to:

Please for God's sake read this owner's manual carefully before you unpack the

Product. You already unpacked it, didn't you? You unpacked it and plugged it

in and turned it on and fiddled with the knobs, and now your child, the same

child who once shoved a polish sausage into your video cassette recorder and set

it on "fast forward", this child also is fiddling with the knobs, right? We might

as well just break these Products right at the factory before we ship them out,

you know that?!?

We're sorry. We just get a little crazy sometimes because we're always getting

back "defective" merchandise where it turns out that the consumer inadvertently

bathed the Product in acid for six days. So, in writing these instructions, we

naturally tend to assume that your skull is filled with dead insects, but we mean

nothing by it. OK? Now let's talk about:

Unpacking the Product

The Product is encased in foam to protect it from the Shipping People, who like

nothing more than to jab spears into outgoing boxes.

Please inspect the contents carefully for gashes or Ida Mae Barker's engagement

ring, which she lost last week, and she thinks that maybe it was while she was

packing Products.

Warning Do not ever as long as you live throw away the box or any of the

pieces of Styrofoam, even the little ones shaped like peanuts. If you attempt to

return the Product to the store, and you are missing one single peanut, the store

personnel will laugh in the chilling manner exhibited by Joseph Stalin just after

he enslaved Eastern Europe.

Besides the Product, the box should contain:

 Eight little rectangular snippets of paper that say "WARNING"

 A little plastic packet containing four 5/17 inch pilfer grommets and two

club-ended 6/93 inch boxcar prawns.

YOU WILL NEED TO SUPPLY: a matrix wrench and 60,000 feet of tram

cable.

IF ANYTHING IS DAMAGED OR MISSING: You IMMEDIATELY should

turn to your spouse and say "Margaret, you know why this country can't make a

car that can get all the way through the drive-through at Burger King without a

major transmission overhaul? Because nobody cares, that's why."

Important This is assuming your spouse's name is Margaret. And not Pete.

Welcome 1-5

 W
e
lc

o
m

e

Plugging In the Product

The plug on this Product represents the latest thinking of the electrical industry's

Plug Mutation Group, which, in a continuing effort to prevent consumers from

causing hazardous electrical current to flow through their appliances, developed

the Three-Pronged Plug, then the Plug Where One Prong is Bigger Than the

Other. Your Product is equipped with the revolutionary new Plug Whose

Prongs Consist of Six Small Religious Figurines Made of Chocolate.

DO NOT TRY TO PLUG IT IN!

Lay it gently on the floor near an outlet, but out of direct sunlight, and clean it

weekly with a damp handkerchief.

Warning When you are laying the plug on the floor, do not hold a sharp object

in your other hand and trip over the cord and poke your eye out, as this could

void the warranty.

Operation of the Product

Warning We manufacture only the attractive designer case. The actual

working central parts of the Product are manufactured in Japan. The instructions

were translated by Mrs. Shirley Peltwater of accounts receivable, who has never

actually been to Japan but does have most of “Shogun" on tape.

Instructions – For results that can be the finest, it is our advising that:

NEVER to hold these buttons two times!! Except the battery. Next taking the

(something) earth section may cause a large occurrence! However. If this is not

a trouble, such rotation is a very maintenance action, as a kindly (something)

from Drawing B.

Warranty

Be it hereby known that this Product, together with but not excluding all those

certain parts thereunto, shall be warranted against all defects, failures and

malfunctions as shall occur between now and Thursday afternoon shortly before

2:00, during which time the Manufacturer will, at no charge to the Owner, send

the Product to our Service People, who will emerge from their caves and engage

in rituals designed to cleanse it of evil spirits. This warranty does not cover the

attractive designer case.

Warning It may be a violation of some law that Mrs. Shirley Peltwater has

"Shogun" on tape.

(Now that we have your attention, for our real warranty, please visit our website.)

1-6 Welcome

Show Control Overview 2-1

W
in

S
c
ri

p
t

T
u

to
ri

a
l

Show Control Overview

If you are designing your first ride, attraction, or themed venue, you may have

heard the phrase “Show Control” bounced around in design meetings. While the

actual definition of “Show Control” may vary among the industries that use it,

the phrase is almost always used to describe an intelligent unit (or group of

units) used to control audio, video and lighting equipment, doors, buttons and

lights in an automated show environment. Show Controllers provide a central

processing point for all show status to minimize the cost of operations and

maintenance. Since 1986 Alcorn McBride show controllers have been

providing these functions and more, all over the world.

In this section, you’ll find:

 The Alcorn McBride Show Control Philosophy.

 Descriptions of Alcorn McBride Show Control products.

2-2 Show Control Overview

What Is Alcorn McBride Show Control?
Alcorn McBride Inc. designs and manufactures a full-featured line of Show

Controllers. These products are designed to work simply, powerfully, and

flawlessly in almost any show environment.

Show Control Hardware

Our Show Controllers provide seamless control over almost any serial or

discrete device, while accepting and processing serial and discrete input from

control panels and other equipment. They also work seamlessly with each other:

any Show Controller can control resources (Inputs, Outputs, Serial Ports, etc.) in

any other Show Controller through a simple RS-232 serial cable.

While there are differences in the features and capabilities of each Show

Controller, there are also striking similarities. Each and every Serial Port,

discrete Input or Output works exactly the same on every product, so controlling

a DVD or Automatic Door with a V2+ is as easy as controlling it with a V16+ or

IO64. In fact, the operating systems are so similar that reconfiguring a show to

run on a different Alcorn McBride Show Controller may be just a few mouse

clicks away.

Show Control Software

Your show is “scripted” using WinScript, a Microsoft Windows-based program.

This powerful programming tool provides menu and window systems for

controller and serial port configuration, as well as powerful sequence and event

programming. Online and context-sensitive help systems are also included to

provide instant access to command syntax, sample applications, and hardware

configurations.

Each "script" consists of up to 256 "sequences". Many sequences may be

running, all at the same time. Sequences may be started initially on power-up, by

push-button, by another sequence, or even by another Show Controller. Each

sequence is comprised of up to 32,767 "events” (depending on available show

memory) which are executed in chronological order. Events may send serial

messages, turn on outputs, control the execution of sequences, and much more.

Remember – sequences are “multi-tasking”; they execute independently, and all

may run simultaneously.

Show Control Firmware

The operating system that resides in the Show Controller is called ScriptOS.

ScriptOS takes the downloaded script and executes the sequences and events in

the specified order while synchronizing itself to the internal frame clock or

external video sync. The downloaded show data is stored it in non-volatile

EEPROM memory, so the Show Controller retains its show data indefinitely,

with no battery backup required.

Show Control Overview 2-3

W
in

S
c
ri

p
t

T
u

to
ri

a
l

Alcorn McBride Show Controllers
Each Alcorn McBride Show Controller provides a diverse set of standard

features to assist you in controlling your show, so one Show Controller may be

all you need to command your entire attraction. Plus, our Show Controllers

work together seamlessly, providing almost unlimited show control possibilities.

Here are the basic features of each Show Controller in our V+ product line. For

more detailed information on a particular controller, contact our Sales

Department at (407) 296-5800 or check out our web site at

http://www.alcorn.com/products/showcontrol.

 V16+
16 Channel Video Disc and Show Controller

Features:

 16 RS-232 Serial Ports

 4 Ports may be RS-485

 One Port may be MIDI

 16 Optically Isolated Inputs

 16 Discrete Outputs

 NTSC Video Sync

 80 Character LCD Display

 V2+
2 Channel Video Disc and Show Controller

Features:

 2 RS-232 Serial Ports

 One Port may be MIDI

 8 Optically Isolated Inputs

(plus 8 Front Panel Button Inputs)

 8 Lamp Driver Outputs

 NTSC Video Sync

 32 Character LCD Display

http://www.alcorn.com/

2-4 Show Control Overview

 IO64
Intelligent I/O Expander

Features:

 1 RS-232 Serial Port

 1 Port may be MIDI

 32 Optically Isolated Inputs

 32 Discrete Outputs

 DMX Machine
Scripted Lighting Controller

Features:

 1 RS-232 Serial Port

 16 TTL Inputs

 Transmits 512 DMX Channels

 SMPTE Machine
SMPTE Reader and Generator

Features:

 Reads and Generates SMPTE & EBU

 Supports all common frame rates

 Triggers Show Control Sequences

Show Control Overview 3-5

W
in

S
c
ri

p
t

T
u

to
ri

a
l

WinScript Tutorial
This tutorial will lead you through the creation, configuration, compilation and

download of a simple show to an Alcorn McBride Show Controller. You will

learn how to:

 Create, Save, Open, and Configure a Script.

 Rename Show Controller I/O, Flags, Ports, etc.

 Insert and organize sequences

 Edit sequences.

 Use branching instructions.

 Use the LCD Display

 Configure sequence triggers.

 Play video from a Video player.

 Create Day and Night Modes for prolonging equipment life.

 Compile and Download your script.

 Run your show!

3-6 Show Control Overview

A Little About Our Show
The show we are going to create will control the basic functions of a digital

video player. We will Search and Play a Digital Video Machine, as well as add

some front-panel pushbutton and LCD Display capabilities.

Note If you don’t feel like typing all of this in, a copy of the completed script,

TUTORIAL.AMW, was installed in your \WinScript\Scripts\Examples\

directory.

The idea behind this tutorial is to get you oriented with your Show Controller

and WinScript. After you’ve mastered the basics, check out Advanced

WinScript Programming and the Application Notes chapters, later in this book.

Then, when you’re ready to start scripting your show, refer to the WinScript

User’s Guide for a screen-by-screen reference of WinScript features.

 I Have a Digital Video Machine. Is It Right For This Tutorial?

Sure! The video player used throughout this tutorial is an Alcorn McBride

Digital Video Machine, but since WinScript transparently supports all common

video player commands, your sequences will look exactly the same as the ones

in the book, no matter what player you use.

 What About My Show Controller?

We’ll be using an Alcorn McBride V16+ Show Controller for this tutorial, but

all Alcorn McBride Show Controllers are programmed exactly the same, so

you’ll be able to follow along with your Show Controller. In fact, you don’t

need a show controller at all to learn WinScript. You can still enter and compile

your script, and then skip the downloading step.

Note If your Show Controller does not include an LCD Display, you may skip

any steps that deal with displaying information on the LCD.

Show Control Overview 3-7

W
in

S
c
ri

p
t

T
u

to
ri

a
l

Opening WinScript and Creating a Blank Script
The first thing you should do when scripting any show is to create a new script

and save it to a file.

1. Run WinScript from the Program Manager (or the Start Menu if you’re

running Windows 95).

2. Close any blank scripts that may have been created when WinScript started.

The default script may not contain the same settings that our tutorial will

use. Now choose File | New from the main menu.

3. Choose your Show Controller from the list in the File New dialog box and

click OK.

4. Choose File | Save As… from the main menu and save your newly

created blank script as tutorial.amw

3-8 Show Control Overview

Customizing the Script
Now, let’s enter some basic information about our script.

1 Choose Configuration | Script… from the main menu and enter title,

author, and revision information into your script. Then, enter your name in

the first Author field. Click OK.

2 If you’ve got a show controller, connect a COM Port of your PC to the

Programmer Port of your Show Controller via a straight-thru RS-232 serial

cable (the cable that came with your Show Controller).

3 Choose Tools | Options | Communications… from the main menu and

only select the COM Port number that you just connected the cable to. If

you just want to practice scripting without downloading, deselect all ports.

Show Control Overview 3-9

W
in

S
c
ri

p
t

T
u

to
ri

a
l

Naming Resources
One of the most powerful tools you can utilize in a script is the ability to assign

English-like names to your Show Controller’s resources (Inputs, Outputs, Serial

Ports, Flags, Variables, and Strings). Before we begin creating sequences for

TUTORIAL, let’s assign some names to the Inputs, Flags, and Serial Ports we’ll

be using. While we’re in the configuration menu, we will also create and name

all of our LCD Display messages.

 Inputs

Our show will use the first three front panel buttons of your Show Controller to

perform various functions. Button 1 (we will call it RunShowButton) will start a

two minute video presentation. Button 2 (we will call it DayNightModeButton)

will toggle between…guess what…That’s right, Day Mode and Night Mode!

Finally, Button 3 (we will call it CreditsButton) will display your name on the

LCD when it is pressed and return the LCD to its previous state when you let it

go.

1. Choose Resources | Inputs … from the main menu.

2. When the Inputs of TUTORIAL window appears, double-click on the cell

labeled input1 and change its name to RunShowButton. Repeat the process

for input2 (naming it DayNightModeButton) and input3 (naming it

CreditsButton). You can also enter some descriptive comments if you wish.

3-10 Show Control Overview

3. Close the Inputs of TUTORIAL window.

 Flags

We will use one of the 32 available flags to tell when we are in Night Mode so

DayNightModeButton can accurately toggle between the two.

4. Choose Resources | Flags … from the main menu.

5. When the Flags of TUTORIAL window appears, double-click on flag1

and change its name to NightModeFlag.

Show Control Overview 3-11

W
in

S
c
ri

p
t

T
u

to
ri

a
l

6. Close the Flags of TUTORIAL window.

 Serial Port

Next, we’ll configure one of the Serial Ports of your Show Controller for a

Digital Video Machine.

7. Choose Resources | Ports … from the main menu.

8. When the Ports of TUTORIAL window appears, double-click on port1

and change its name to DVM.

9. Right-click on the “Protocol” field of DVM and choose Protocol Wizard.

10. When the Edit Serial Port Configuration window appears, click on the

down arrow and choose Alcorn McBride Digital Video Machine from the

protocol list (or if you are using a different player, choose it from the list).

Click OK.

3-12 Show Control Overview

11 We will create an “Error Sequence” later that will automatically run if the

DVM stops sending acknowledgement messages to the Show Controller.

Enter the name DVMError in the Error Seq field.

12 Close the Ports of TUTORIAL window.

 LCD Messages

Our show will make good use of the LCD by displaying the show’s name and

current mode in the first line of the LCD and progress information in the second

line. First, though, we need to create our messages using LCD Wizard.

13 Choose Resources | LCD Strings … from the main menu.

14 Enter the name BootUpMsg in the first String Name field.

15 Right-click on the String Data field of BootUpMsg and choose LCD
Wizard.

16 In the first line of the LCD Wizard, put: My First Show: Booting Up….

Click OK.

Show Control Overview 3-13

W
in

S
c
ri

p
t

T
u

to
ri

a
l

17 Repeat steps 14-16 for the next eight messages:

DayModeMsg

NightModeMsg

GoingToNightModeMsg

3-14 Show Control Overview

GoingToDayModeMsg

ClearLine2Msg

Show Control Overview 3-15

W
in

S
c
ri

p
t

T
u

to
ri

a
l

CreditMsg (Enter your name after “Programmed by”)

PlayingPresentationMsg

LDPErrorMsg

Whew…now, your LCD Strings of TUTORIAL window should look like this:

3-16 Show Control Overview

Close the LCD Strings of TUTORIAL window.

Save your progress by choosing File | Save from the main menu or by clicking

the toolbar button.

Inserting and Organizing Sequences
We’ll continue setting up our script by creating sequences that will perform the

various show functions that we’ve designed. Let’s see…what is required of this

script?:

 One sequence that starts on power up and places the system in Night Mode.

 One sequence that toggles Day or Night Mode when DayNightModeButton

is pressed.

 One sequence that plays the video presentation when RunShowButton is

pressed.

 One sequence that displays your name when CreditsButton is pressed.

 One sequence that recovers the LCD when CreditsButton is let go.

From this list of requirements, let’s insert our sequences:

1. Highlight the Sequences of TUTORIAL window, click on the Default

sequence’s name cell and rename it by typing Autostart. We want this

sequence to run on powerup and automatically place the system in Night

Mode. We’ll be configuring it to do that in a few moments, but first…

2. Insert the other five sequences as shown in the picture below by simply

typing the information in each consecutive cell and pressing Enter.

Show Control Overview 3-17

W
in

S
c
ri

p
t

T
u

to
ri

a
l

Now, let’s configure the trigger properties of these sequences:

3. We know that we want Autostart to start on power up, so right-click on

Autostart and choose Autostart Disabled. This will toggle the sequence to

be Autostart Enabled.

4. DayNightMode should be started every time the operator presses

DayNightModeButton, so right-click on DayNightMode and choose Start:

5. Select DayNightModeButton and Active On from the Edit Start
Trigger dialog box and click OK.

6. MainShow should be started when the operator presses RunShowButton, so

right-click on MainShow and choose Start:

7. Select RunShowButton and Active On from the Edit Start Trigger

dialog box and click OK.

3-18 Show Control Overview

8. It would probably be nice if we could restart the presentation after a short

delay, so right-click on MainShow and choose Restart Disabled…

9. Check the Restart Enabled checkbox and enter 150 into the Restart Lockout

box. This will give us a 5-second delay (since our frame rate is 30 fps)

before anyone can press RunShowButton to restart the show. Click OK.

10. Now, let’s setup our Credits sequences. CreditsOn should be started when

the operator presses CreditsButton, so right-click on CreditsOn and choose

Start:

11. Select CreditsButton and Active On from the Edit Start Trigger

dialog box and click OK.

12. Right-click on CreditsOff and choose Start:

13. Select CreditsButton and Active Off from the Edit Start Trigger dialog

box and click OK.

Adding Events
Let’s digress for a moment and talk about how Sequences and Events really

work inside a Show Controller. Alcorn McBride Show Controllers scan their

Sequences once every frame. Any Sequences that are considered “running” are

checked for events that should be executed.

Events are executed when the amount of time that has elapsed since the

Sequence was started is equal to or greater than the time entered in the Time

field of the Event. When a sequence is started, its timer is set to frame 1, and it

immediately executes any events with a time of 00:00.00 or 00:00.01. On each

successive frame, all running sequences are checked to see if they have any

events scheduled to run. For example, an event with a 00:02.15 execution time

will occur two seconds and fifteen frames after its Sequence was started.

Now, back to our sequences…

Autostart

Autostart will display our “Boot Up” message, as well as clear the second line of

the. Then, it will turn off NightModeFlag so that our DayNightMode sequence

will place the system in Night Mode when it is started.

1. Select Autostart in Sequences of TUTORIAL then press Enter.

Show Control Overview 3-19

W
in

S
c
ri

p
t

T
u

to
ri

a
l

2. Select the Event field of the first event and type “D”. This will bring up

the Available Events List and select the first event starting with a D.

3. Choose Display and press Enter.

4. Enter “BootUpMsg” (without the quotation marks) in the Data1 field.

Congratulations, you’ve just entered your first Event! This event will display

the text in BootUpMsg when Autostart runs.

5. Enter the rest of the events as follows:

6. Close the [Autostart] of TUTORIAL window.

3-20 Show Control Overview

DayNightMode

DayNightMode will check the status of NightModeFlag and then either put the

system in Day Mode or Night Mode. You’ve probably been wondering “just

what are Day Mode and Night Mode?” We will Stop our video player in Night

Mode and Search our video player in Day Mode. We will search the video

player to the start of our presentation so we will have almost instantaneous

access to video playback when the operator pushes RunShowButton.

1. Select DayNightMode in Sequences of TUTORIAL then press Enter.

2. Enter the Events as follows:

3. Close the [DayNightMode] of TUTORIAL window.

MainShow

MainShow will play a two-minute presentation from our video player, starting at

the beginning of clip 1. If this were a real show, we would probably connect an

external sync cable between the video player and the Show Controller to provide

frame synchronization, but since this show is less than five minutes, clock drift

won’t cause more than a frame of inaccuracy, so we won’t use that feature.

At the end of our presentation, we’ll search back to the start and wait on the next

press of the button.

1. Select MainShow in Sequences of TUTORIAL then press Enter.

2. Enter the Events as follows:

Show Control Overview 3-21

W
in

S
c
ri

p
t

T
u

to
ri

a
l

3. Close the [MainShow] of TUTORIAL window.

DVMError

This simple sequence will display DVMErrorMsg if the video Player is not

connected to the Show Controller or is not responding to commands.

1. Select DVMError in Sequences of TUTORIAL then press Enter.

2. Enter the following Event:

3. Close the [DVMError] of TUTORIAL window.

CreditsOn

Our credits sequences will let you show the world who programmed this

incredible show! CreditsOn will use the StoreLCD event to save what is

currently displayed on the LCD. Then, it will display your name on the bottom

line of the LCD.

1. Select CreditsOn in Sequences of TUTORIAL then press Enter.

2. Enter the Events as follows:

3. Close the [CreditsOn] of TUTORIAL window.

3-22 Show Control Overview

CreditsOff

Our final sequence, CreditsOff will use the RecoverLCD event to “remember”

what was displayed on the LCD when the last StoreLCD Event was executed

(remember, we stored the LCD in CreditsOn) and put it back on the display.

1. Select CreditsOff in Sequences of TUTORIAL then press Enter.

2. Enter the following event:

3. Close the [CreditsOff] of TUTORIAL window.

Compiling and Downloading
We’re done! Now its time to compile and download our script into the Show

Controller. Before we start, make sure you have connected the programming

cable between your PC and the Show Controller.

Also, connect the correct video player cable between Port 1 of your Show

Controller and the DVM's RS-232 control port. Finally, make sure that the DVM

is powered and there is a file 1 on the drive.

1. Save your progress by choosing File | Save from the main menu or by

clicking the toolbar button.

2. Choose File | Compile Script and Download from the main menu or

click the toolbar button.

3. When WinScript finishes compiling your show, you may see some errors

listed. Double-click on each of the errors and refer back to the earlier steps

in this tutorial to verify that you have entered the events correctly.

4. When the script compiles correctly and you are prompted to download the

show data to the Show Controller, click OK.

Running the Show
The show runs immediately after download is complete and goes into Night

Mode. After the DVM has stopped and the system is in Night Mode, try out

your new show by pressing the second button (DayNightModeButton) to bring

the system into Day Mode. Then, press the first button (RunShowButton) to

start your video presentation.

Notice that you can restart the show by pressing the first button after five

seconds, you cannot start the show when the system is in Night Mode, and you

can display your credits screen at any time.

Show Control Overview 3-23

W
in

S
c
ri

p
t

T
u

to
ri

a
l

Summary
Congratulations on writing your first script. We hope you enjoy exploring the

many possibilities that a multi-tasking show environment can bring. If you feel

adventurous, we recommend experimenting with the script you've just created

by adding events and changing display messages. You might even try assigning

more buttons to play different presentations from the disc. More advanced

scripting techniques can be found in the Advanced Scripting and Application

Notes sections of this manual.

Thanks for taking this tutorial and good luck with your show!

3-24 Show Control Overview

WinScript User’s Guide 4-1

W
in

S
c
ri

p
t

G
u

id
e

WinScript User’s Guide

This section describes all of the features of WinScript. WinScript’s easy-to-use

Windows interface allows you to configure your script quickly and efficiently

via popup menu items and dialog boxes. Most common operations may be done

with keystrokes for those who prefer DOS-like speed. New “Wizards” are

available at every turn to offer advice and assistance in creating complicated

script components. In this User’s Guide you will find:

 Menu choices, toolbar buttons, and shortcut keys to accomplish common

scripting tasks.

 How to configure ports to communicate with any serial device, including

other Show Controllers.

 Instructions on using new WinScript tools such as Time Calculator,

Protocol Viewer, and Script Wizard

 How to integrate SMPTE triggering and chasing into your show by using an

Alcorn McBride SMPTE Machine in tandem with your Show Controller.

4-2 WinScript User’s Guide

Getting Help

To access online WinScript help about a particular programming subject, choose

Help | Show Control Help from the main menu (or click the toolbar

button and then click on the object you wish to get help on).

To access online hardware help, pinouts, and connection tips about your Show

Controller, choose Help | Show Control Help from the main menu.

To learn version and author information about your copy of WinScript, choose

Help | About WINSCRIPT from the main menu (or click the toolbar

button).

Creating, Opening, Closing, and Saving Scripts

To create a new script press CTRL+N, click the toolbar button, or choose

File | New from the main menu. When the File New dialog box appears,

choose the Show Controller you wish to create a script for and click OK.

To open an existing script press CTRL+O, click the toolbar button, or

choose File | Open from the main menu. When the File Open dialog box

appears, choose the script you wish to open and click OK.

Tip To open a recently edited script, choose File from the main menu and click

on the name of the script you wish to open, visible at the bottom of the pulldown

menu.

To close the currently selected script choose File | Close from the main menu.

To save a script under its current file name press CTRL+S, click the toolbar

button, or choose File | Save from the main menu.

To save a script under a new file name choose File | Save As… from the main

menu. When the File Save As dialog box appears, type in a new filename or

choose a script you wish to overwrite.

WinScript User’s Guide 4-3

W
in

S
c
ri

p
t

G
u

id
e

Configuring the Show Controller
To set the unit type, unit address, sync source & frequency, choose

Configuration | Unit… from the main menu.

Unit Type

Select the type of Show Controller you will be scripting from the unit list box.

Changing the unit type redefines the number of inputs, outputs and serial ports

available to your script.

Frame Rate

Select the frame rate at which the Show Controller is to operate. We normally

choose a rate that matches our external equipment, although this is purely for

programming convenience unless you are using external sync – then it is critical

that they match. The frame rate affects certain timed events such as Blink and

Pulse.

Unit Address

If your Show Control system includes several Show Controllers or other devices

on the same serial line (RS-485/422 or MIDI), your Show Controller must have

a unique “Address” to distinguish it from any other device on the line.

Clock Timing Source

The Show Controller can either synchronize itself to its own internal processor

clock (Processor) or to an external Composite Sync source (External).

4-4 WinScript User’s Guide

If External sync is used, choose the frequency of the sync signal from the

External Frequency combo box. This clock must be an integral multiple of the

frame rate. The maximum clock frequency is 600Hz. High clock rates may

degrade performance in large, complex scripts.

Version, Author, and Show Description
To record version, author, and show description information for future

reference, choose Configuration | Script… from the main menu.

Inputs, Outputs, Variables, Ports, and Strings
Show Controller Resources can be named and configured for use throughout

your script by using the Resources menu.

Naming Show Controller Resources

Inputs, Outputs, Flags, Variables, Ports, and Strings can be given English names

for easy readability and debugging. To rename a resource, simply double-click

on its name in resource configuration screen (e.g. Resources | Inputs,

Resources | Outputs, etc.). Resource names may be up to 25 characters in

length. Spaces may be used, and are automatically replaced by underscores.

WinScript User’s Guide 4-5

W
in

S
c
ri

p
t

G
u

id
e

Port Configuration and Protocol

Each Serial Port on your Alcorn McBride Show Controller may be configured to

communicate with any serial device by choosing a protocol. New Events

associated with the protocol are automatically added to Event Wizard.

To configure a port for an external serial device, choose Resources | Ports…,

right-click on the desired port, and choose Protocol Wizard. You can change

Baud Rates, Parity, Data Bits, and Stop Bits from the defaults by clicking on

them.

4-6 WinScript User’s Guide

Communicating with Alcorn McBride Show
Controllers

When configuring ports to communicate with other Alcorn McBride Show

Controllers, you can use AMI Product Wizard to gain access to resource names

in the external unit. Alternatively, you can access external resources by their

index number. See the Event Reference later in this manual for more

information on events you can execute in a remote unit.

To configure a port to communicate with another Alcorn McBride Show

Controller, choose Resources | Ports…, right-click on the desired port, and

choose AMI Product Wizard. Then, choose the script for the desired external

Show Controller from currently open scripts or choose another one by clicking

on Browse…

Entering LCD Strings

Strings of text that can be displayed on the LCD Display of your Show

Controller can either be entered manually in the appropriate Data column of a

Display event or as an “LCD String”. An LCD String can be addressed by its

name in a Display event, but a manually entered string must be retyped in a

Data column every time you wish to use it. For more information on manually

entering strings into an Event, see Sequence Editing.

To delete a desired string, press F5, or CTRL+D.

To insert a desired string, press F6, CTRL+Y, or select the Insert key.

To move from cell to cell, press the Tab key or Enter, or the arrow keys.

WinScript User’s Guide 4-7

W
in

S
c
ri

p
t

G
u

id
e

To enter an LCD String, choose Resources | LCD Strings…select a blank

line and type a name for your string in the String Name field and enter the

string data into the String Data field.

 To Enter A Simple Message As String Data

String Data can consist of ASCII characters formatted as either single characters

or entered in quotes. Single characters and quoted text may be used in the same

LCD String, but must be separated by a comma:
“Running Show #”,h30,h33

Displays:
Running Show #03

 To Display A Message On The LCD’s Second Line

Use a Carriage Return (h0D) as a character between the two lines of text:
“My Show: Day Mode”,h0D,“Show Running”

Displays:
My Show: Day Mode

Show Running

 To Display The Current Value Of A State Variable

In addition to ASCII characters, you can display the current value of a State

Variable with either Left or Right Justification by typing h0E (for Left

Justification) or h0F (for Right Justification in a 3 character wide field), a

comma, and then the State Variable’s Index Number:
“My Show: Day Mode”,h0D,h0F,5,“ Errors Detected”

Displays:
My Show: Day Mode

0 Errors Detected

(Where “0” is the current value of Var5)

“My Show: Day Mode”,h0D,“Running Show #”,h0F,1

Displays:
My Show: Day Mode

Running Special Birthday Show # 3

(Where “3” is the current value of Var1)

4-8 WinScript User’s Guide

Note A Right Justified Variable includes leading spaces to act as placeholders

for all possible characters, so it will always be 3 characters in length. A Left

Justified Variable will not include any leading spaces as placeholders.

 To Display A Message At A Specific Row and/or Column

In many show situations, the LCD is called upon to continually update show

status or display certain numbers or values at certain positions on the screen. In

these cases, the string may be preceded by Row and Column values (separated

by a comma or space):
0,20,“My Show”

Displays:
 My Show

If no Row or Column information is present, the LCD defaults to Row 0,

Column 0:
“My Show”

Displays:
My Show

 To Display Two-Line Messages Using LCD Wizard

LCD Wizard allows you to enter multi-line text-only messages quickly and

easily. Right click on the desired LCD String and choose LCD Wizard.

Enter text as you want it displayed in the two edit boxes. The top box

corresponds to the top line of the display and the bottom box corresponds to the

bottom line. LCD Wizard enters the Carriage Return for you. Also, you can

force a line to be completely blank by clicking on the checkbox next to it.

WinScript User’s Guide 4-9

W
in

S
c
ri

p
t

G
u

id
e

Displays:
My Show: Day Mode

Show #1 Running

Note You cannot display single characters or State Variable values using LCD

Wizard. These values must be manually entered into the resulting String Data.

Entering Data Strings

Data Strings to be sent out a serial port via the MessageOut event can either be

entered manually in the appropriate Data column of the MessageOut event or

as a “Data String”. A Data String can be addressed by its name in a

MessageOut event, but a manually entered string must be retyped in a Data

column every time you wish to use it. For more information on manually

entering strings into an Event, see Sequence Editing.

 To Enter A Simple Serial Message As String Data

String Data can consist of single bytes or quoted text. Single bytes and quoted

text can be included in the same string, but must be separated by a comma or

space:
h00 h00 h01,“PL”,h0D

Sends the message:
h00 h00 h01 h50 h4C h0D

SMPTE Triggering
Every sequence that resides in a Show Controller may be SMPTE triggered

using an Alcorn McBride SMPTE Machine. To use a SMPTE Machine in this

manner configure the SMPTE Machine using WinScript, set SMPTE triggers in

the desired sequences (see Configuring Sequence Properties), and download the

compiled script through the SMPTE Machine to your Show Controller (see

Compiling and Downloading later in this chapter).

Note If you’re using an Alcorn McBride show controller with our Digital

Binloop, you don’t need a separate SMPTE Machine. All of the same

capabilities exist in the Binloop’s controller card. Just plug your show

controller into the Binloop’s show control port

To configure the SMPTE Machine using WinScript choose Configuration |
SMPTE…, and enter the desired operating parameters in the Configuration
SMPTE dialog box. Then, connect the SMPTE Machine to a COM Port of

your PC and click Configure Now.

4-10 WinScript User’s Guide

SMPTE Frame Rate

The SMPTE Machine can be configured to generate SMPTE at 23.976, 24, 25,

29.97 Drop, 29.97 Non-Drop, and 30 frames per second (FPS). When

configured to Read SMPTE, the SMPTE Machine locks to the frame rate of the

incoming SMPTE timecode.

SMPTE Generate/Read Options

To set SMPTE Generate/Read Options, choose the desired function from the

combo box. You can choose one of three options:

WinScript User’s Guide 4-11

W
in

S
c
ri

p
t

G
u

id
e

 Generate SMPTE-No Genlock to Video – Generates SMPTE timecode

at the specified Frame Rate based on an internal clock.

 Generate SMPTE-Genlock to Video – Generates SMPTE timecode at

the specified Frame Rate based on an external Composite Sync signal.

 Read External SMPTE – Reads SMPTE from an external source and

echoes the incoming SMPTE to the SMPTE Out port.

Enable SMPTE on Power Up

If the SMPTE Machine is configured to generate SMPTE, checking this box will

enable SMPTE generation upon power up. SMPTE timecode will begin at the

Start Time (or Preroll Time, if applicable) given in the SMPTE Generation
Options.

If the SMPTE Machine is configured to read SMPTE, checking this box will

cause the SMPTE Machine to immediately look for and lock to incoming

SMPTE and begin sending sequence triggers, without requiring a start

command.

Configure Show Control Port

 MIDI – You can control the SMPTE Machine’s operation using MIDI show

control messages by checking this button. This configuration may require a

hardware jumper setting change (see the SMPTE Machine Hardware

Reference later in this manual for more information on configuring the unit

for MIDI).

 Use MTC – If this option is checked, the SMPTE machine will

generate and decode MIDI Timecode. This option is useful for

converting SMPTE Time to MTC, and vice-versa.

 RS-232 – This selection means that port 1 of your SMPTE machine will be

connected to one of the Show Controller’s RS-232 ports.

 Enable Timestamp – If this option is checked, the SMPTE

machine will send a 9-bit message containing the current

HH:MM:SS.FF data out of port 1. An Alcorn McBride Show

Controller can then read this data, and use it for internal timecode

features.

Important: If you wish to use either the MTC or RS-232 Timestamp features,

you will need SMPTE Machine Firmware V1.63 or newer. Also, the Show

Controllers require Firmware V6.42 or greater to decode an RS-232 Timestamp.

SMPTE Generation Options

 Preroll Time – Sometimes when SMPTE will be looping throughout a

show, it is useful to have a SMPTE Preroll of a small length to allow other

show equipment time to lock to the SMPTE signal. When SMPTE loops,

timecode is set back to the Start Time, not the Preroll Time.

4-12 WinScript User’s Guide

Note If you don’t wish to use a SMPTE Preroll, make the Preroll Time equal to

the Start Time.

 Start Time – When SMPTE is enabled, the SMPTE Machine defaults

timecode to the Preroll Time (unless it has been modified by a

SetSMPTETime event). If SMPTE is configured to loop at the End Time,

however, it will be set back at the Start Time, not the Preroll Time.

 End Time – The SMPTE Machine stops generating SMPTE timecode at

this time if it is configured to Stop at End Time.

 SMPTE End Behavior – When SMPTE is started, it is set to the Preroll

Time. When SMPTE reaches the End Time, it can either stop or loop. If

the SMPTE Machine is configured to Loop at End Time, SMPTE will be

set back to the Start Time every time it reaches the End Time. If the

SMPTE Machine is configured to Stop at End Time, SMPTE will stop

immediately at the End Time.

 Mute SMPTE When Stopped – Configures the SMPTE Machine to

mute its SMPTE output when it has stopped generating timecode.

 Start Button Restarts SMPTE Even While Running – Configures

the SMPTE Machine to restart SMPTE from the Preroll Time when the

Start button is pushed.

WinScript User’s Guide 4-13

W
in

S
c
ri

p
t

G
u

id
e

RS-232 Timecode Options

 Dropout Tolerance – This setting specifies the number of frames the

Show Controller can miss before it takes action. The ‘action’ that is taken

depends on what timecode mode each sequence is in.

Note - See Chasing Timecode with Sequences for more details about the

different timecode modes.

Configure Now

Sends the current configuration indicated in the Configure SMPTE dialog box

to a SMPTE Machine connected to the currently selected COM port on your PC.

Enable Now

Sends an EnableSMPTE command to a SMPTE Machine connected to the

currently selected COM port on your PC. An EnableSMPTE command enables

SMPTE Generation or SMPTE Reading.

Disable Now

Sends a DisableSMPTE command to a SMPTE Machine connected to the

currently selected COM port on your PC. A DisableSMPTE command disables

SMPTE Generation and SMPTE Reading.

4-14 WinScript User’s Guide

Using The "Spreadsheet"
WinScript's interface works just like a spreadsheet. You can traverse the fields

by pressing the arrow keys and open a field for editing by double-clicking it you

can enter new data by simply selecting a field and string to type. You can also

cut, paste, and copy entire sequences or events or strings.

Working with Sequences
Your Show Controller can hold 256 independent sequences containing up to

32,767 events (depending on available show memory). These sequences may be

copied, cut, and pasted between different scripts, or within the same script, using

simple menu and hotkey commands from within the Sequence List.

Your Tab button and arrows key will move you from cell to cell throughout

your designated sequences.

The Sequence List

The sequence list displays three types of information for each sequence:

Index Number – Sequence Index Numbers run sequentially from 1 up to 256.

Locally, the sequence number is for reference only – we always refer to the

sequences by name – but the index number can be used when starting, stopping,

pausing, or resetting the sequence from within another Show Controller.

Autostart Enable checkbox – The Autostart Enable checkbox indicates if

the sequence is set to execute if the Show Controller is powered-up or receives a

download. If there is an asterisk in the box, the sequence is Autostart Enabled.

You can toggle between Autostart and Loop Enable checkbox’s by simply using

your mouse and clicking between the two.

Loop Enable checkbox – The Loop Enable checkbox indicates if the

sequence is set to loop. If there is an asterisk in the box, the sequence is Loop

Enabled. You can toggle between Autostart and Loop Enable checkbox’s by

simply using your mouse and clicking between the two.

Sequence Name – The Sequence Name is used to differentiate sequences

from each other. No two sequences in the same script should have the same

name.

WinScript User’s Guide 4-15

W
in

S
c
ri

p
t

G
u

id
e

Triggers – The Triggers field indicates which resources, if any, will trigger or

affect the sequence in question. A sequence can be triggered by an Input,

Variable or Timecode.

Sequence Comment – A Sequence Comment can hold any relevant

information for future reference.

To open the sequence of your choice select which sequence you would like, then

press Enter.

Inserting and Deleting Sequences

To insert a new sequence into a script, highlight the Sequence List of your

script and press the Insert key, F6,or choose Edit | Insert Sequence from

the main menu. Then, type in a name for the sequence in the Sequence Name

field. To delete a sequence, highlight the sequence you wish to delete in the

Sequence List of your script and press the F5 key or choose Edit | Delete
Sequence from the main menu.

Copying, Cutting, and Pasting Sequences

To copy a sequence (or group of sequences) from one script to another or to

duplicate a sequence (or group of sequences) within a script, select the desired

sequence(s) and press CTRL+C, click the toolbar button, or select Edit |
Copy from the main menu to copy the sequence(s) to the clipboard. Now,

select the Sequence List of the script you wish to paste to and press

CTRL+V, click the toolbar button, or select Edit | Paste from the main

menu to paste the sequence(s).

To cut a sequence (or group of sequences) to be pasted into another script, select

the desired sequences(s) then press CTRL+X, click the toolbar button, or

select Edit | Cut from the main menu to move the sequence(s) to the clipboard.

Now, select the Sequence List of the script you wish to paste to and press

CTRL+V, click the toolbar button, or select Edit | Paste from the main

menu to paste the sequences(s).

4-16 WinScript User’s Guide

Configuring Sequence Properties

Individual sequences have several different properties: Indentation, Autostart

action, Loop action, Restart action, SMPTE trigger, SMPTE Chase, and Start,

Stop, Pause, and Reset triggers. To view or change sequence properties, right-

click on the desired sequence in the Sequence List and choose the appropriate

sequence property:

 Indentation

Sequences may be indented for organizational purposes. The usual way to

utilize this feature is to insert a blank sequence as a “heading” for a group of

sequences and then indent each sequence one level.

To indent a sequence, right-click on the sequence name (or choose Edit |
Sequence Properties from the main menu) and choose a new indention level

from the popup list.

WinScript User’s Guide 4-17

W
in

S
c
ri

p
t

G
u

id
e

 Autostart Enabled/Disabled

Sequences can be enabled to start on power up (or after you download the show)

by right-clicking on the sequence name (or by choosing Edit | Sequence
Properties from the main menu). Then, click on the Autostart menu item to

toggle between Autostart Enabled and Disabled.

 Looping Enabled/Disabled

Sequences can be enabled to loop after they finish executing all events by right-

clicking on the sequence name (or by choosing Edit | Sequence Properties

from the main menu). Then, click on the Loop menu item to toggle between

Loop Enabled and Disabled.

Note If a sequence is Loop Enabled and has finished executing all events, the

sequence will wait a full frame before restarting. However, if the sequence is in

a SMPTE Chase mode, this setting has no effect.

 Restart Enabled/Disabled

Normally a sequence cannot be started again until it has finished executing.

You can allow restarts by right-clicking on the sequence name (or by choosing

Edit | Sequence Properties from the main menu), and then clicking on the

Restart menu item. When the Sequence Restart Options dialog box

appears, check the Restart Enabled checkbox.

A “Restart Lockout” may be entered in the Restart Lockout field of the

Sequence Restart Options dialog box. During this number of frames at the

beginning of the sequence, it will not restart. After Restart Lockout has expired,

the sequence may be restarted at any time.

Note Just like looping, this setting has no effect if the sequence is configured to

chase timecode.

 Timecode Trigger/Chase

A sequence can be configured to either chase or be started by timecode from an

Alcorn McBride SMPTE Machine. This can be done by right-clicking on the

sequence name (or by choosing Edit | Sequence Properties from the main

menu), and then clicking on the SMPTE menu item.

4-18 WinScript User’s Guide

 Chase Timecode – Checking this box will cause this sequence to base its

time on incoming timecode rather than the controller’s internal clock.

o Start Time – This time signifies the beginning of the sequence.

o Jam Sync Mode – This timecode chasing mode causes the sequence

to adjust its location (or scrub) in the event that the timecode skips

backwards or forwards.

o Reset Mode – If timecode skips backwards or forwards in this chase

mode, the sequence will stop and reset.

Note See Chasing Timecode with Sequences section for more detailed

information about these modes.

 Trigger to Start Sequence – If this option is selected, the SMPTE

Machine will cause this sequence to start at the time specified in the Start
Time section.

Tip To quickly select a value for either Start Time field, click in the field and

then move the scroll bar up and down until the desired value has been selected.

Repeat for other fields as needed.

 Start Trigger

A sequence can be started by an Input and/or State Variable trigger. To set a

Start Trigger, right-click on the sequence name (or choose Edit | Sequence
Properties from the main menu), and then click on the Start: menu item.

When the Edit Start Trigger dialog box appears, choose an Input trigger, State

Variable trigger, or both:

WinScript User’s Guide 4-19

W
in

S
c
ri

p
t

G
u

id
e

 Input – The sequence is started when an Input turns on or off (i.e. on the

rising or falling edge).

 State Variable – The sequence is started when a State Variable is =, , >,

<, , or a value or another State Variable.

 Both – The sequence is started when an Input and/or a State Variable meet

the desired trigger requirements.

Note Select the “And” radio button if you require both the input and state

variable conditions to be true for the sequence to start. Select “Or” if either of

them individually should start the sequence.

 Stop Trigger

A sequence’s execution can be temporarily stopped by an Input and/or State

Variable trigger.

Note “Stop” is not the same thing as “Reset”. Stop leaves the event pointer

where it was, and simply stops the sequence’s timer. A “Start” will pick up

where it left off. To stop a sequence and put its event pointer back at the top,

use “Reset” instead.

To set a Stop Trigger, right-click on the sequence name (or choose Edit |
Sequence Properties from the main menu), and then click on the Stop:
menu item. When the Edit Stop Trigger dialog box appears, choose an Input

4-20 WinScript User’s Guide

trigger, State Variable trigger, or both (for menu descriptions see the Start

Trigger section).

 Pause Trigger

A looping sequence can be paused by an Input and/or State Variable trigger if it

is Loop Enabled (the Pause Trigger has no effect on sequences that are not

Loop Enabled). If the Pause Trigger is actuated, when the sequence reaches

the end it stops looping.

To set a Pause Trigger, right-click on the sequence name (or choose Edit |
Sequence Properties from the main menu), and then click on the Pause:
menu item. When the Edit Pause Trigger dialog box appears, choose an

Input trigger, State Variable trigger, or both (for menu descriptions see the Start

Trigger section).

 Reset Trigger

A sequence can be reset by an Input and/or State Variable trigger. Sequence

execution stops immediately and the event pointer is reset to the first event.

To set a Reset Trigger, right-click on the sequence name (or choose Edit |
Sequence Properties from the main menu), and then click on the Reset:
menu item. When the Edit Reset Trigger dialog box appears, choose an Input

trigger, State Variable trigger, or both (for menu descriptions see the Start

Trigger section).

Testing a Sequence

You can test how your Show Controller will handle a sequence by “single-

stepping”, or immediately starting, the sequence. Verify that the correct COM

port of your PC is connected to the Programmer Port of your Show Controller.

Then, download the script to the Show Controller (see Compiling and

Downloading later in this chapter). Next, select the sequence you want to test

and press F7, click the (green light) toolbar button, or choose Tools |
Online | Start Sequence Now.

To reset the sequence while it is running, select the sequence and press F8, click

the (red light) toolbar button, or choose Tools | Online | Reset
Sequence Now.

Editing Sequences
Sequences can consist of up to 32,767 events (depending on available show

memory) that occur at specific times after the sequence is started.

Opening a Sequence

To open a sequence for editing, double-click the desired sequence’s index

number in the Sequence List or select it and press Enter (or choose Edit |
Sequence Events from the main menu).

WinScript User’s Guide 4-21

W
in

S
c
ri

p
t

G
u

id
e

To move from cell to cell throughout your desired sequence you press the Tab

button or use the arrow keys.

To stop an edit in progress, press Esc.

Inserting and Deleting Events

To insert a new event into a sequence, highlight the existing event below where

you want to insert the new event and press the Insert key, F6, CTRL+Y (or

choose Edit | Insert Event from the main menu).

To delete the current cell out of the sequence, press F5, or CTRL+D.

Indenting a Sequence

To Indent a sequence in your scrip press CTRL+T.

Copying, Cutting, and Pasting Events

To copy an event (or group of events) from one sequence to another, one script

to another, or to duplicate an event (or group of events) within a sequence, select

the desired events(s) and press CTRL+C, click the toolbar button, or select

Edit | Copy from the main menu to copy the event(s) to the clipboard. Now,

open the sequence you wish to paste to and press CTRL+V, click the toolbar

button, or select Edit | Paste from the main menu to paste the event(s).

To cut an event (or group of events) from one sequence to be pasted into another

sequence within the same script (or into a sequence in another script), select the

desired events(s) and press CTRL+X, click the toolbar button, or select Edit
| Cut from the main menu to move the event(s) to the clipboard. Now, open the

sequence you wish to paste to and press CTRL+V, click the toolbar button,

or select Edit | Paste from the main menu to paste the event(s).

Viewing Event Execution Times in Frames or
MM:SS.FF

To choose whether to view Event Execution Times in either Frames or

MM:SS.FF format, click on the toolbar button.

Using Event List Information

The event list displays five types of information about each event:

Index Number – Event Index Numbers run sequentially from 1 up to 32767.

These numbers show the order in which events will be executed based upon

their Execution Time.

4-22 WinScript User’s Guide

Compilation Status – Events may be commented out, or “REMed”, to

prevent them from being compiled by clicking in the R column on the event you

wish to REM. An asterisk will appear in the R cell if the event is REMed.

Label – Each event can have a unique label. Labels are used as destinations for

program control "branching" instructions (see Event Reference). Labels may

contain letters, numbers punctuation and spaces, but must start with a letter.

Execution Time – Each event is executed at a specific time. “Sequence

Time” starts at 00:00.01 when the sequence starts and increments once per

frame. The Execution Time is the Sequence Time when the event should

execute. If an event is encountered which is scheduled at or before the

sequence’s current time, it will be executed immediately.

Data Fields – Each of the four data fields can hold parameters for events. If an

event does not require any parameters, the data fields are ignored.

Comment – An Event Comment can hold any relevant information for future

reference.

Editing an Event

When a new event is inserted into a sequence, the event becomes a Nop event

by default. To change the event and/or its properties and parameters double-

click on the desired cell and change the text.

 Editing the Time using Event Wizard

You can perform advanced editing on the Execution Time of one or multiple

events using the Event Wizard. To select multiple events you can drag the

mouse over them or click on the first event, scroll down, press the shift key and

click on the last event. Then click the right mouse button in the Time field of

one of the selected events to bring up the Event Wizard.

WinScript User’s Guide 4-23

W
in

S
c
ri

p
t

G
u

id
e

To add time or to subtract time from a single event or group of events, choose

Add Time to Event or Subtract Time from Event and then put the amount

of time you wish to add or subtract in the Time to Add or Time to Subtract
field.

You can also select multiple event lines and use Incrementally Fill to

automatically enter incremental times for a series of events.

To add or subtract from the total sequence length by proportionally changing the

Execution Time of each event, choose Expand or Compress Overall
Sequence Length Spacing All Event Times Proportionally and then

put a new overall sequence length in the New Overall field.

 Editing an Event using Event Wizard

To change the event name, select the Event cell of the desired event and start

typing the first few letters of the new event name. Event Wizard will

automatically pop up the Available Events List and select an event that

corresponds with those letters. If the correct event is not highlighted, keep

typing the event name (or select the correct event with your mouse). When the

correct event is displayed, click OK.

Note To configure Event Wizard to not automatically pop up the Available

Events List, see WinScript Options later in this chapter.

4-24 WinScript User’s Guide

Each event listed in the Available Events List has a prefix that designates its

type:

 INT: -- Internal event; Used only for controlling resources in this Show

Controller.

 EXT: -- External or Serial Event; Used for controlling remote Show

Controllers and other serial devices.

 I&E: -- Internal or External Event; Used for controlling resources in a local

or remote Show Controller, or other serial device.

 Getting Help on Event Parameters using Event Wizard

Event parameters are entered into the Data1-Data4 cells. To get help

regarding required parameters, right-click in a Data cell and choose Event
Wizard.

WinScript User’s Guide 4-25

W
in

S
c
ri

p
t

G
u

id
e

Testing An Event

You can test how your Show Controller will handle a single event by “single-

stepping”. Verify that the correct COM port of your PC is connected to the

Programmer Port of your Show Controller. Then, select the event you want to

test and press F7, click the (green light) toolbar button, or choose Tools |
Online | Execute Event Now.

Viewing Events as a Timeline

To view events in a time based arrangement, click on the button. If the

sequence is not time linear, a notification will appear requesting permission to

sort the events. Event times, that are less than their preceding event times, will

be changed to the preceding time.

 Modifying Events in Timeline

Right click on an event to insert events, delete events, cut, copy, paste, or run

the single event. Click the to run selected events immediately when

connected to the show controller. Drag an event with the mouse to change an

event’s time. Drag multiple events by holding down the Ctrl or the Shift keys.

4-26 WinScript User’s Guide

 Changing the Timeline View

Change the amount of time displayed by clicking on the zoom in or zoom

out buttons. When in Timecode Chase Mode, clicking on the

 button will alter the times to reflect the true time of the events. Click

the button to view the timeline in frames.

Chasing Timecode with Sequences
 When used in conjunction with an Alcorn McBride SMPTE Machine,

sequences have the ability to chase SMPTE or EBU timecode. Since this is a

completely different approach to using sequences, their behavior differs from

the default time behavior. Let’s go over these differences, and learn how to use

these methods to control sequences.

 In the default mode of operation (meaning no timecode chasing), a sequence

begins incrementing its frame clock and executing events the instant that it is

started. However, with timecode chasing, starting a sequence does not

necessarily mean that it will begin executing. Instead, initiating a Start sequence

event is more like ‘arming’ or ‘activating’ the sequence. No events will

actually be processed until the timecode has exceeded the sequence’s Start
Time. Once this point has been reached, the timecode will control the rate at

which the frame counter increments. In fact, the current frame is calculated just

like this:

(Timecode) – (Sequence Start Time) = (Current Frame to Execute)

Example: 1:00:01.16 – 1:00:00.00 = 00:01.16

Now, what happens if the timecode doesn’t increment normally? What if it

skips backwards or forwards? How will the sequence react? Well, that’s the

tricky part! For that reason, we’ve added a few options to give you control of

these situations.

Dropout Tolerance

The SMPTE Configuration box, which can be found in the menu by clicking

Configuration | SMPTE, contains the setting RS-232 Dropout Tolerance.

This setting specifies the number of frames that can be skipped, missed, or lost

in a black hole before the show controller determines that a timecode jump has

taken place. Detecting a jump in the timecode is the first step in determining

when to take action.

WinScript User’s Guide 4-27

W
in

S
c
ri

p
t

G
u

id
e

Jam Sync Mode

If a sequence is in this mode, and a timecode jump is detected, the sequence will

‘scrub’ to the location that matches the new time. This is done by rewinding the

sequence to the first event, and then scrolling through the event list until one

with an equal or higher timestamp is found.

PROS – The timecode can scrub back and forth, and the sequence will find the

proper position. This drastically reduces the development effort in timing out

events in long sequences, and makes it easier to skip or redo things during a

show.

CONS – Since events are not actually executed while the sequence is scrubbing,

conditional jumps (ie. goto, ifon, etc.) should not be used in this mode.

Note - Once a sequence in Jam Sync Mode has been started, it will never stop

on its own. A Reset command must be issued by the script or external

command.

Reset Mode

Unlike Jam Sync Mode, there are a couple of circumstances that can cause a

sequence in Reset Mode to stop executing. They are the following:

 When the last event in the sequence is processed.

 When a timecode jump is detected.

Once either of these conditions occurs, the sequence can only be started again if

the timecode is below the start time AND a start sequence event is executed.

PROS - This mode is very useful for sequences that must execute from start to

finish without the possibility of skipping any events. It is also good for critical

sequences that are not expecting the timecode to drop or jump.

CONS – Although this mode causes the sequence to precisely chase timecode,

this type of sequence cannot be scrubbed.

Note – Since they do not apply to chasing timecode, both of these modes ignore

the Loop and Restart options. If you enable these options, the compiler will

issue a warning and then disable these settings.

4-28 WinScript User’s Guide

Compiling and Downloading
When you’ve finished scripting your show, it’s time to compile and download

the script into “show data” to be stored in the “Show Memory” of the Show

Controller.

When WinScript downloads your show data, it uses the settings defined in the

Advanced Communications dialog box to configure how often it sends

bytes of show data, how many bytes are sent at one time, and how long to wait

for a response from the Show Controller before timing out. To change the

Advanced Communication settings, click the Advanced button in the

Communications Ports dialog box.

Serial Port Timeout – WinScript waits this amount of time for a response

from the Show Controller before aborting the download and displaying an error.

Download Packet Size – WinScript sends this number of bytes at a time

when downloading show data.

Packet Spacing – This defines the amount of time WinScript waits between

sending individual show data packets to the Show Controller.

Alcorn 9-bit – Default download mode. Every Alcorn McBride Show

Controller is compatible with this mode.

Alcorn 8-bit – Unfortunately, not all serial ports can handle 9-bit

communications (ie. USB RS-232 adapters). If this is the case, you may need

to use the Alcorn 8-bit method. IMPORTANT: This feature has not always

been available, so make sure you have firmware version V6.41 or later in your

Show Controller.

WinScript User’s Guide 4-29

W
in

S
c
ri

p
t

G
u

id
e

Compiling and Downloading the Script

To Compile and Download your script, click the toolbar button or choose
File | Compile Script and Download from the main menu. WinScript will

proceed to compile your script and (if it is free of errors) prompt you to

download the resulting show data to your Show Controller.

Note If you are downloading through a SMPTE Machine, see Downloading

Through A SMPTE Machine later in this chapter.

If you have selected one or more COM ports that are available for download,

you will be prompted to download the show when it compiles correctly.

WinScript will check which COM ports are available and allow you to select the

COM port to which your Show Controller is connected. You may then

download the show by clicking Download.

4-30 WinScript User’s Guide

Identifying and Correcting Scripting Errors

If WinScript detects an Error in your script when it is compiling, you must

correct the error in order to be able to download your show. To correct an error,

double-click on the error and WinScript will open the correct sequence and

select the suspect event.

If WinScript warns you of a possible problem with a Warning, you may also

double-click on the warning and be taken to the suspect resource screen or

event.

WinScript User’s Guide 4-31

W
in

S
c
ri

p
t

G
u

id
e

The Compiler Window provides detailed information about any warnings or

errors in the following columns:

Compiler Message – This column details the compiling and provides a listing

of any errors. It also shows the progress of the compile process.

Error – This column indicates the number of this error.

Seq/Res – This defines which sequence number the error is located in.

Event – This defines which event number in the above sequence that the error

is located in.

Param – This defines which parameter in the event contains the error.

Troubleshooting Download Problems

If WinScript is timing out or having trouble downloading the compiled show

data to the Show Controller, press the Tips button in the Advanced

Communications dialog box for help.

Downloading Through A SMPTE Machine

If you’re using an Alcorn McBride SMPTE Machine to provide SMPTE triggers

to your Show Controller, you must download your show data to the Show

Controller through the SMPTE Machine. WinScript first sends the SMPTE

4-32 WinScript User’s Guide

trigger information to the SMPTE Machine, then downloads the show data to

the SMPTE Machine which in turn passes the data to the Show Controller.

When you run the show, the Show Controller can send SMPTE commands back

through its Programmer Port. Here is the correct cabling for a Show

Controller/SMPTE Machine system:

WinScript Tools
WinScript includes several very useful tools to increase your scripting

productivity.

Protocol Viewer

Protocol Viewer provides an easy way for you to view available events and

configurations for an available serial port protocol. Choose Tools | Protocol
Viewer… from the main menu. When the Protocol Viewer window appears,

choose the protocol file you wish to view.

Cue List
The Cue List function provides a convenient way to assign SMPTE triggers to

many sequences in succession. This is particularly useful for programming live

shows. This section describes the controls available in the Cue List dialog box.

WinScript User’s Guide 4-33

W
in

S
c
ri

p
t

G
u

id
e

This information is also available by clicking on the context help question mark

in the title bar of the dialog box.

Current Time

This edit box displays the Current Time. When running, it is updated at the

Frame Rate, as determined by the Unit Configuration Dialog. When stopped,

the value in this edit box may be changed to alter the time at which the timer

will begin when the Start Timer button is pressed. The Reset to Start button

copies the value from the Start Time edit box into this box. Time values should

be entered in HH:MM:SS.FF format.

Edit Start Time

This edit box displays the proposed Start Time. The Reset to Start button

copies the value from the Start Time edit box into this box. Usually this will be

the beginning timecode for the show. Note that the timer may be started and

stopped without affecting (or using) this time. Time values should be entered in

HH:MM:SS.FF format.

4-34 WinScript User’s Guide

Start Timer

Use this button to start the timer. The timer will begin at the value in the

Current Time edit box, and will increment at the Frame Rate, as determined

by the Unit Configuration Dialog. If Send SMPTE is enabled, this button also

sets the SMPTE generator to the current time and enables it to run.

Reset to Start

Use this button to stop the timer and copy the value from the Start Time edit

box into the Current Time edit box. If Send SMPTE is enabled, this button

also stops the SMPTE generator.

Pause Timer

Use this button to pause the timer. The time value in the Current Time edit box

will stop changing. If Send SMPTE is enabled, the SMPTE generator will also

be paused. While paused, the value in the Current Time edit box may be

changed to alter the time at which the timer will resume when the Start Timer

button is pressed again.

Source Sequence List

This is a list of all sequences that don't already have a SMPTE trigger associated

with them (except for those already in the Cues on Deck List). Select sequences

from this list and click the Add Cue button to move them to the Cues On Deck

List, in preparation for dynamically assigning them a SMPTE trigger. Sequences

in this list are sorted in alphabetical order

Cues On Deck List

The sequences in this list have been placed "On Deck", ready to have their

SMPTE trigger assigned. To assign a trigger, start the timer, and at the desired

trigger time press the Add SMPTE Trigger button. The sequence will be

tagged with the current time and moved to the SMPTE Trigger List. Sequences

may be removed from this list using the Remove Cue button. Sequences in this

list are not sorted, but are placed in the order in which they were added. They

may be dragged to any desired position in the list.

SMPTE Trigger List

This is a list of all sequences that already have a SMPTE trigger associated with

them. To remove a SMPTE trigger, select sequences from this list and click the

Remove Trigger button to move them to the Cues On Deck List. Sequences in

this list are sorted in time order

WinScript User’s Guide 4-35

W
in

S
c
ri

p
t

G
u

id
e

Add Trigger

Use this button to move a sequence from the Cues On Deck List to the SMPTE

Trigger List. The sequence will be tagged with the current time as a start

trigger. If the Send Triggers box is checked, the sequence will also be started. If

you accidentally move a sequence to the SMPTE Trigger List, you can move it

back to the Cues On Deck List with the Remove Trigger button. Note that the

sequence will not automatically trigger the next time this SMPTE timecode is

encountered unless the script is downloaded to the unit. The optimum procedure

for using the Cuelist is to rough in all the cues on a single pass, then download

the script and check the timing. Cues can then be precisely adjusted from the

main Sequences List view or from the SMPTE Trigger view and re-

downloaded.

Remove Trigger

Use this button to remove a sequence from the SMPTE Trigger List. The

sequence will be placed back in the Cues On Deck List.

Control SMPTE

Check this box to send Set SMPTE Time, Enable SMPTE and Disable

SMPTE serial commands to a SMPTE Machine or Digital Binloop whenever

the Cue d Dialog's timer is started, paused or reset. The message will be

transmitted from the currently configured Download Port, which is selected

using the Tools Menu.

Send Triggers

Check this box to send Sequence Start serial commands to the show controller

whenever a sequence is transferred from the Cues On Deck List to the SMPTE

Trigger List by clicking on the Add Trigger button. The message will be

transmitted from the currently configured Download Port, which is selected

using the Tools Menu.

Add Cue

Use this button to move a sequence from the Sequence List to the Cues On

Deck List. This allows you to create a list of sequences that will be assigned

SMPTE timecode triggers, and then dynamically move them to the Trigger List

as the show runs. Once the sequences are in the Trigger List, their start times

may be precisely adjusted from the main Sequence view or from the SMPTE

Trigger view. If you accidentally move a sequence to the Cues On Deck List,

you can remove it with the Remove Cue button.

Remove Cue

Use this button to remove a sequence from the Cues On Deck List. The

sequence will be placed back in the Sequences List.

4-36 WinScript User’s Guide

Start Sequence

Use this button to start the currently selected sequence. The sequence may be in

the Sequences List, Cues On Deck List, or SMPTE Trigger List. This button

is quite useful for testing the operation of sequences before they are added to the

SMPTE Trigger List.

Reset Sequence

Use this button to reset the currently selected sequence. The sequence may be in

the Sequences List, Cues On Deck List, or SMPTE Trigger List. This

button is useful for terminating execution of a sequence that has been

inadvertently started either by the Start Sequence button or by adding it to the

SMPTE Trigger List with Send Triggers enabled.

Script Wizard

Script Wizard creates a skeleton script for controlling multiple Digital Video

Machines. To launch Script Wizard, choose Tools | Script Wizard… from

the main menu. Then, enter the name of the new show, your name, the total

number of video players in your show, a sync source for your Show Controller,

and the type of Show Controller.

Note Script Wizard currently only supports automated script creation for the

V16+ and V4+, but you can easily create a script for any other Alcorn McBride

Show Controller by choosing one of these and then changing the unit type of the

resulting script.

WinScript User’s Guide 4-37

W
in

S
c
ri

p
t

G
u

id
e

DMXWizard

DMXWizard gives you the ability to control your DMX Machine from your

PC, using lighting board-like faders to control up to eight contiguous channels

of DMX at once. Channels may be grouped so that multiple faders move with a

single mouse drag. DMXWizard is particularly helpful in determining desired

DMX values when developing scripts in WinScript, but it may also be run as a

stand-alone program.

Fader

Use this control to ramp the assigned DMX channel’s value up and down. If the

associated Ena checkbox is selected, serial messages are dynamically sent to the

DMX machine whenever any DMX value changes. If the associated Grp

checkbox is selected, all faders assigned to the group will move up and down

together. To jump the fader to a preset position, enter a value in the Edit box

and then click the Set or Set All button.

Selecting DMX Channels

Set the Base Address to the first DMX channel in the block of 8 that will be

mapped to the DMX Machine. Valid DMX Channels are 1 through 512, so the

maximum value for Base Address is 505. You can manually enter the Base

Address, or select it with the + and – buttons. Click this button to set all the

sliders to the bottom position. DMX Channels assigned to sliders that have the

Ena checkbox set will immediately go off. Select the Communications port to

which the DMX Machine is connected. While DMXWizard is open, the port

cannot be used by other applications. This edit box shows the exact setting of

the assigned DMX channel, in either percent or actual value (0–255). The

display format depends upon the setting of the Percent Value radio buttons. The

channel may be adjusted very precisely by entering a value and clicking the Set

button. This checkbox provides a quick way to enable or disable all eight DMX

channels’ serial update states. If this checkbox is clear, clicking it sets all of the

Ena checkboxes, allowing serial messages to be sent to the DMX Machine

whenever any channel value is changed. If the Enable All checkbox is already

set, clicking it clears all of the Ena checkboxes. This checkbox provides a quick

way to group or ungroup all eight DMX channels. When grouped, channel

faders move together. If this checkbox is clear, clicking it sets all of the Grp

checkboxes. If the Grp All checkbox is already set, clicking it clears all of the

Grp checkboxes. If this checkbox is set, serial messages are sent to the DMX

Machine whenever this channel changes value. The Ena All checkbox provides

a quick way to check and uncheck all of the Ena checkboxes. If this checkbox

is set, this channel is assigned to the group. When grouped, channel faders move

together. The Grp All checkbox provides a quick way to check and uncheck all

of the Grp checkboxes. This button sets the associated Slider to the value in the

Edit box, and, if the Ena checkbox is set, sends a message to the DMX Machine

to update the channel’s value. The Set All button provides a quick way to set all

of the channels at once. This button provides a quick way to set all of the

4-38 WinScript User’s Guide

channels at once. For each channel, it sets the Slider to the value in the Edit

box, and, if that channel’s Ena checkbox is set, sends a message to the DMX

Machine to update its value. This radio button causes all DMX channel values to

be displayed in percent. In this mode the Edit boxes accept numbers from 0

through 100, and the Slider ranges are scaled accordingly. This radio button

causes all DMX channel values to be displayed as numeric values. In this mode

the Edit boxes accept numbers from 0 through 255, and the Slider ranges are

scaled accordingly.

Time Calculator

Time Calculator is a handy utility that adds and subtracts SMPTE times in either

HH:MM:SS.FF or Absolute Frames format. You can also choose to base your

calculations on one of several different frame rates.

Note Time Calculator was designated as one of the Top Ten Windows

Multimedia Applications by Clicked.Com.

WinScript Options
WinScript provides several ways for you to customize your workspace.

WinScript User’s Guide 4-39

W
in

S
c
ri

p
t

G
u

id
e

The WinScript Toolbar

By default, the WinScript toolbar resides at the top of the main WinScript

window, underneath the main menu, and provides shortcut buttons to several

common WinScript functions (for more information, see Navigating WinScript

earlier in this chapter). To Enable/Disable the Toolbar, choose Tools |
Options | View Toolbar. A check mark will be displayed next to “View

Toolbar” if the toolbar is currently enabled.

The WinScript Status Bar

The WinScript status bar resides at the bottom of the main WinScript window

and provides short descriptions of toolbar buttons or menu items when the

mouse is over them (for more information, see Navigating WinScript earlier in

this chapter). To Enable/Disable the status bar, choose Tools | Options |
View Status Bar. A check mark will be displayed next to “View Status Bar”

if the status bar is currently enabled.

General Preferences

By default, WinScript creates a new, blank script at startup. To disable this

feature, choose Tools | Options | General… and then uncheck the Create

New File at Startup checkbox and click OK. To re-enable the feature, check the

checkbox.

Event Wizard automatically pops up with a suggested event name after you type

the first few letters. To disable this feature, choose Tools | Options |
General… and then uncheck the Always Pop Up Event List checkbox and

click OK. To re-enable the Event Wizard popup, check the checkbox.

To limit the Length of Time Popup Windows Stay on Screen, select the

appropriate button from the list.

4-40 WinScript User’s Guide

Compiler Options

When WinScript compiles your show for download, it checks the validity of

your sequences and the syntax of each event, and then compiles the script into a

binary file to be downloaded into your Show Controller.

The WinScript Compiler provides a significant improvement over previous

script compilers by allowing you to choose the way in which your script is

compiled.

When Compiling for Speed, WinScript compiles each event and places it in

the show data. When you make a change to the script and recompile, WinScript

only recompiles the sequences you've changed and then links them to the other

previously compiled sequences.

When Compiling for Size, WinScript reuses duplicate events within the same

sequence to reduce the total size of the compiled show data (this reduces the risk

of running out of available memory in the Show Controller).

To choose the desired method of compilation, choose Tools | Options |
Compiler… from the main menu. Then, choose a compilation method from

the two available choices: Optimize for Speed and Optimize for Size.

WinScript User’s Guide 4-41

W
in

S
c
ri

p
t

G
u

id
e

You can also choose to have WinScript tell you exactly what it is doing when it

compiles your show by checking the Compiler Messages Verbose

checkbox.

To check for duplicated resource names and other obscure problems in your

script when you compile, check the Maximize Problem Detection checkbox.

To prevent error boxes from popping up during the Compile, check the Don't
Display Any Compiler Popups checkbox.

You can choose to have WinScript not offer to archive your scripts when

downloading by checking the Don't Offer to Archive Scripts checkbox.

Communication Options

Before changing anything in this section, you must determine which method of

communication you will use on your show controller. Select the appropriate

communication method in the Method section.

If you intend to use the serial port to download a full show or test specific

events, your PC must be connected to your Show Controller’s Programmer Port

by a straight-thru DB9F-DB9F serial cable. WinScript will automatically detect

any serial ports that are available and add them to the drop box in the Serial
Settings section.

If you are using a Show Controller with Ethernet Capability or you are using an

Ethernet add-on product (Webster), you can configure it in the Ethernet
Settings section.

In this screen you can also choose to display verbose download messages. This

means that when your PC is downloading a compiled show to your Show

Controller that it will tell you exactly what messages it is sending to the Show

Controller and describe the Show Controller’s responses.

4-42 WinScript User’s Guide

It

User-Defined Tools

User-defined tools may be added to the Tools menu by choosing Tools |
Options | User Defined Tools…

To change one of the user-defined tools, enter a name for the tool in the Name

field then enter the path and filename of the program to be run when the menu

item is chosen.

To use a user-defined tool, choose Tools | tool name from the main menu.

WinScript User’s Guide 4-43

W
in

S
c
ri

p
t

G
u

id
e

Tip To create a shortcut for a user-defined tool, place an ampersand (&) before

a letter in the name of the tool. When you wish to use the tool while scripting,

press ALT+T+letter (where letter is the character following the ampersand).

4-44 WinScript User’s Guide

Event Reference 5-1

E
v
e
n

t

R
e
fe

re
n

c
e

Event Reference

Sequence events control all of the activities of the Show Controller including

Output states, Serial Ports, the flow of sequences, and even other Show

Controllers. In this chapter you’ll find:

 Descriptions, syntax and examples of Discrete, Logical, Program Control,

and LCD Display events.

 Descriptions and syntax of common Serial Events for controlling external

serial devices.

5-2 Event Reference

Types of Events
There are several "types" of events from which to choose. Events can control

resources internal to the Show Controller (Flags, Sequences, LCD), resources

connected to the Show Controller (Outputs, Serial Ports), or even resources in

another Show Controller.

Discrete Events – Control Outputs in a local or remote Show Controller.

Logical Events – Control Flags and State Variables in a local or remote Show

Controller.

Program Control Events – Control Sequences, and logical "branching"

within sequences.

LCD Display Events – Display custom messages on the LCD.

Built-In Serial Events – Send State Variable values, DMX Ramp commands,

or custom serial messages out a Serial Port.

In addition to these built-in event types, Alcorn McBride Show Controllers are

infinitely extensible as far as Serial Events are concerned. By creating your own

Protocol Files, you can actually expand the language of your Show Controller.

We ship WinScript with a selection of useful Protocol Files. Here are just a few:

MIDI Events – Control MIDI devices from your Show Controller's MIDI port.

SMPTE Events – Serially control an Alcorn McBride SMPTE Machine.

Digital Video Machine Events – Control video playback and drive selection

in an Alcorn McBride Digital Video Machine.

Digital Binloop Events – Control audio/video playback and SMPTE

generation in an Alcorn McBride Digital Binloop.

Internal vs. External Events
Events that control resources inside the "local" Show Controller (the one you are

currently scripting) are called Internal Events. Events that control resources

inside a "remote" Show Controller (connected to the local Show Controller via a

serial port) are called External Events.

All Discrete, Logical, LCD Display, and Program Control events can be used as

External events (with the exception of the branching instructions Nop, Goto,

IfOn, IfOff, IfVarEQ, IfVarGE, IfVarGT, IfVarNE, IfVarLT, and IfVarLE).

To change the syntax of an event from Internal to External, move all required

parameters one Data column to the right (e.g. if a parameter is in the Data1

column, move it to the Data2 column) and type the name of the Serial Port

connected to the remote Show Controller in the Data1 column.

Event Reference 5-3

E
v
e
n

t

R
e
fe

re
n

c
e

Note For a port to accept External events, it must be configured with AMI
Product Wizard as an Alcorn McBride Show Controller (see Communicating

With Alcorn McBride Show Controllers in Chapter 4). Choose Resources |
Ports… to configure a port.

Example – Internal Event Syntax

Event Data1 Data2 Data3

On Output1

Turns on Output1 in the local Show Controller.

Example – External Event Syntax

Event Data1 Data2 Data3

On Port2 Output1

Turns on Output1 in a remote Show Controller connected to Port2.

Note If you did not configure the Serial Port connected to the remote Show

Controller using AMI Product Wizard, you will need to replace any remote

resource names with their corresponding Index Numbers.

5-4 Event Reference

Discrete Events
Discrete Events utilize discrete relay contact closures (or lamp drivers in some

Show Controllers).

To Do This… Use This Event…

Turn on an Output On

Turn off an Output Off

Toggle the state of an Output Toggle

Continuously blink an Output at a constant rate Blink

Pulse an Output for a user-defined length of time Pulse

Set a group of eight Outputs to a binary value OutPort

Read a group of eight Inputs to a state variable InPort

 On
Turns on an Output. The Output remains on until another event modifies its

state.

Event Syntax

Event Data1

On Name of Output

 Off
Turns off an Output. The Output remains off until another event modifies its

state.

Event Syntax

Event Data1

Off Name of Output

 Toggle
Toggles the state of an Output. If the Output is currently on, it will be turned

off. If the Output is currently off, it will be turned on.

Event Syntax

Event Data1

Toggle Name of Output

Event Reference 5-5

E
v
e
n

t

R
e
fe

re
n

c
e

 Blink
Blinks an Output. Blinking an Output causes it to turn on (for the specified

Blink Time) and off (for the specified Blink Time) continuously until reset by an

Off, On, Pulse, OutPort, or Toggle event.

Event Syntax

Event Data1 Data2

Blink Name of Output Blink Time*

*The Blink Time should be in Seconds.Frames (e.g. 4.15) and can have a maximum value

of 255 frames (8.15 max @ 29.97 and 30 fps; 10.15 max @ 23.976 and 24 fps; 10.05 max
@ 25 fps).

Example

Event Data1 Data2

Blink Output1 1.15

Blinks Output1 with a Blink Time of 1.15 (one second, fifteen frames). This

means that if Output1 is currently "off", it will turn on for 1.15 and then off for

1.15 repeatedly until reset by another Discrete Control event.

 Pulse
Pulses an Output. If the Output is currently on, it will be turned off for the

specified Pulse Length and then on again. If the Output is currently off, it will

be turned on for the specified Pulse Length and then off again.

Event Syntax

Event Data1 Data2

Pulse Name of Output Pulse Length*

*The Pulse Length should be in Seconds.Frames (e.g. 4.15) and can have a maximum

value of 255 frames (8.15 max @ 29.97 and 30 fps; 10.15 max @ 23.976 and 24 fps;
10.05 max @ 25 fps).

Example

Event Data1 Data2

Pulse Output3 2.00

Pulses Output3 (assume it is currently "off") with a Pulse Length of 2.00 (two

seconds). This means that Output3 will turn on for 2.00 and then off again.

5-6 Event Reference

 OutPort
Sets a group of eight Outputs to a single binary value (0-255). The lowest

number Output becomes the Least Significant Bit (or LSB), the highest becomes

the Most Significant Bit (or MSB).

Event Syntax

Event Data1 Data2

OutPort Output Bank* Desired Literal Value (0-255)

*Bank1 = Outputs 1-8; Bank2 = Outputs 9-16; Bank3 = Outputs 17-24; Bank4 =
Outputs 25-32

Example

Event Data1 Data2

OutPort Bank1 157

Sets output bank 1 (Outputs 1-8) to the binary representation of 157 (or

10011101). After the OutPort event is executed, the following outputs are

actuated:

1 2 3 4 5 6 7 8

 InPort – (New in version 6.36)
Reads a group of eight inputs to a state variable. The lowest number input

becomes the LSB, etc.

Event Syntax

Event Data1 Data2

InPort Input Bank* Name of State Variable

*Bank1 = Inputs 1-8; Bank2 = Inputs 9-16; Bank3 = Inputs 17-24; Bank4 = Inputs 25-32

Example

Event Data1 Data2

InPort Bank1 Var7

Sets var7 to the value of input bank 1 (inputs 1-8). Assuming inputs of

10011101 (where 1 is on), after the InPort event is executed, Var7 will contain

the value 157.

Event Reference 5-7

E
v
e
n

t

R
e
fe

re
n

c
e

Logical Events
Logical Events utilize Flags and State Variables in a local or remote Show

Controller.

To Do This… Use This Event…

Turn on a flag On

Turn off a flag Off

Toggle the state of a flag Toggle

Add a value to a State Variable AddVar

Subtract a value from a State Variable SubVar

Set the value of a State Variable SetVarEQ

Save a State Variable to non-volatile memory SaveVar

Recover a State Variable from non-volatile memory RestoreVar

 On
Turns on a Flag. The Flag remains on until another event modifies its state.

Event Syntax

Event Data1

On Name of Flag

 Off
Turns off a Flag. The Flag remains off until another event modifies its state.

Event Syntax

Event Data1

Off Name of Flag

 Toggle
Toggles the state of a Flag. If the Flag is currently on, it will be turned off. If

the Flag is currently off, it will be turned on.

Event Syntax

Event Data1

Toggle Name of Flag

5-8 Event Reference

 AddVar
Adds a value to a State Variable. This value can be a constant value (0-255) or

another State Variable.

Event Syntax

Event Data1 Data2

AddVar Name of State Variable Constant value (0-255) <or>

Name of another State Variable

 SubVar
Subtracts a value from a State Variable. This value can be a constant value (0-

255) or another State Variable.

Event Syntax

Event Data1 Data2

SubVar Name of State Variable Constant value (0-255) <or>

Name of another State Variable

 SetVarEQ
Sets the value of a State Variable to a constant value (0-255) or to the value of

another State Variable.

Event Syntax

Event Data1 Data2

SetVarEQ Name of State Variable Constant value (0-255) <or>

Name of another State Variable

 SaveVar – (New in version 6.35)
Stores the value of a state variable in non-volatile memory so that it can be

recovered, even after power cycling, using RestoreVar.

Event Data1

SaveVar Name of State Variable

 RestoreVar – (New in version 6.35)
Recovers the value of a state variable from non-volatile memory.

Event Data1

RestoreVar Name of State Variable

Event Reference 5-9

E
v
e
n

t

R
e
fe

re
n

c
e

Program Control Events
Program Control Events can be used to control the flow of your show. Program

Control Events include events for controlling Sequences in a local or remote

Show Controller. Events are also included for performing conditional branching

within a sequence based on State Variable values and/or Input/Output/Flag

states.

To Do This… Use This Event…

Start a Sequence Start

Stop a Sequence Reset

Pause a Sequence at the current event Stop

Stop a looping Sequence after the last event Pause

Unconditionally jump over events Goto

Jump over events if an Input, Output, or Flag is "on" IfOn

Jump over events if an Input, Output, or Flag is "off" IfOff

Jump over events if a State Variable is equal to a

constant value or the value of another State Variable
IfVarEQ

Jump over events if a State Variable is greater than a

constant value or the value of another State Variable
IfVarGT

Jump over events if a State Variable is greater than or

equal to a constant value or the value of another State

Variable

IfVarGE

Jump over events if a State Variable is less than a

constant value or the value of another State Variable
IfVarLT

Jump over events if a State Variable is less than or

equal to a constant value or the value of another State
Variable

IfVarLE

Jump over events if a State Variable is not equal to a

constant value or the value of another State Variable
IfVarNE

Set a dummy placeholder for a branch event Nop

5-10 Event Reference

 Start
Starts a sequence. If the sequence is not currently running and was never paused

in the middle by a Stop event, the sequence will begin execution at the first

event. If the sequence started was running and is now stopped by some other

sequence, the sequence started will resume execution at the event. If the

sequence started is currently running and the setup for the sequence has Restart

Enabled, the sequence will stop event execution and restart execution from the

first event. If the sequence started is currently running and does not have

Restart Enabled, it will continue running as it was and the start event will be

ignored.

Event Syntax

Event Data1

Start Sequence Name

 Stop
Stops a sequence at the current event. A Start event will cause the sequence to

resume from the point at which it was stopped.

Event Syntax

Event Data1

Stop Sequence Name

 Pause
Causes a looping sequence to stop looping after the last event. If the sequence is

restarted, it starts execution from the first event.

Event Syntax

Event Data1

Pause Sequence Name

 Reset
Stops a sequence immediately. If the sequence is restarted, it starts execution

from the first event.

Event Syntax

Event Data1

Reset Sequence Name

 Goto
Unconditionally jumps over events. Only forward jumps are allowed.

Event Reference 5-11

E
v
e
n

t

R
e
fe

re
n

c
e

Note A branch event causes no change in time within the sequence; all events

occur based on time from sequence start.

Event Syntax

Label Time Event Data1 Data2

 00:00.00 Goto Event Label

 00:00.00 Skipped Events

Event Label 00:00.00 Some Event

Example

Label Time Event Data1 Data2 Data3

 00:00.00 IfVarEQ ShowVar 1 RunShow1

 00:00.00 IfVarEQ ShowVar 2 RunShow2

 00:00.00 Goto End

RunShow1 00:00.00 Start GoShow1

 00:00.00 Goto End

RunShow2 00:00.00 Start GoShow2

End 00:00.00 Nop

If ShowVar is not a valid number, the first Goto is reached and the sequence jumps to the

end and performs no action. If ShowVar is equal to 1, "Show 1" is started, then the
second Goto event causes the sequence to jump over the "Show 2" events.

 IfOn, IfOff
Conditionally jumps over events based on the state of an Input, Output, or Flag.

Only forward jumps are allowed.

 IfOn -- Jumps over events if an Input, Output, or Flag is "on".

 IfOff -- Jumps over events if an Input, Output, or Flag is "off".

Note A branch event causes no change in time within the sequence; all events

occur based on time from sequence start.

5-12 Event Reference

Event Syntax

Label Time Event Data1 Data2

 00:00.00 Event Name Name of Input,

Output, or Flag

Event Label

 00:00.00 Skipped Events

Event Label 00:00.00 Some Event

Example

Label Time Event Data1 Data2

 00:00.00 IfOn NightModeFlag End

 00:00.00 Play Ldp1

End 00:00.00 Nop

The Play event is skipped if the system is in Night Mode.

 IfVarEQ, IfVarNE, IfVarGT, IfVarGE,
IfVarLE, IfVarLT
Conditionally jumps over a group of events based on the value of a State

Variable.

 IfVarEQ -- Jumps over events if the value of a State Variable is equal to a

constant value (0-255) or the value of another State Variable.

 IfVarNE -- Jumps over events if the value of a State Variable is not equal to

a constant value (0-255) or the value of another State Variable.

 IfVarGT -- Jumps over events if the value of a State Variable is greater than

a constant value (0-255) or the value of another State Variable.

 IfVarGE -- Jumps over events if the value of a State Variable is greater

than or equal to a constant value (0-255) or the value of another State

Variable.

 IfVarLE -- Jumps over events if the value of a State Variable is less than or

equal to a constant value (0-255) or the value of another State Variable.

 IfVarLT -- Jumps over events if the value of a State Variable is less than

equal to a constant value (0-255) or the value of another State Variable.

Event Reference 5-13

E
v
e
n

t

R
e
fe

re
n

c
e

Event Syntax

Label Time Event Data1 Data2 Data3

 00:00.00 Event Name State

Variable

Constant value

(0-255) <or>

another State
Variable

Event Label

 00:00.00 Skipped Events

Event Label 00:00.00 SomeEvent

Example #1

Label Time Event Data1 Data2 Data3

 00:00.00 IfVarGE ShowVar 5 End

 00:00.00 Play Ldp1

End 00:00.00 Nop

The Play event is skipped if ShowVar 5.

Example #2

Label Time Event Data1 Data2 Data3

 00:00.00 AddVar ShowVar 1

 00:00.00 IfVarLE ShowVar 100 End

 00:00.00 SetVarEQ ShowVar 0

End 00:00.00 Nop

This sequence adds one to ShowVar and then sets it back to 0 if it greater than 100.

 Nop
Used as a branch placeholder. “Nop” stands for “No Operation”.

Event Syntax

Event Data1

Nop

Example

Label Time Event Data1 Data2 Data3

 00:00.00 IfVarEQ ShowVar 5 End

 00:00.00 Play Ldp1

End 00:00.00 Nop

5-14 Event Reference

LCD Display Events
LCD Display Events display custom text messages as well as Flag and Variable

states on the LCD.

To Do This… Use This Event…

Display a custom message on the LCD Display

Store the currently displayed LCD message StoreLCD

Retrieve and display a previously stored LCD message RecoverLCD

Display the state of a group of flags on the LCD ShowFlags

Display the value of a State Variable on the LCD ShowVar

 Display
Displays a custom message on the LCD Display.

Note When using the Display event as an External Event, the LCD message

must reside in the local Show Controller.

Event Syntax

Event Data1

Display Name of LCD String <or> Literal Message*

Tip For more information on entering LCD Strings and special syntax for

displaying State Variable values and positioning text within the LCD, see

Chapter 4, pages 6-7.

Example #1

Event Data1

Display DayModeMsg

Displays:
My Show: Day Mode

If DayModeMsg is:

Event Reference 5-15

E
v
e
n

t

R
e
fe

re
n

c
e

Example #2

Event Data1

Display "My Show: Night Mode ",h0D," "

Displays:

My Show: Night Mode

 StoreLCD
Stores both lines of text currently displayed on the LCD. Text may be recovered

at any time by using RecoverLCD.

Event Syntax

Event Data1

StoreLCD

 RecoverLCD
Re-displays both lines of text previously stored by StoreLCD. If no text was

previously stored, the Show Controller version number is displayed.

Event Syntax

Event Data1

RecoverLCD

5-16 Event Reference

 ShowFlags
Displays the status of one bank of flags on the LCD Display.

Event Syntax

Event Data1

ShowFlags Flag Bank*

* Bank1 = Flags 1-16; Bank2 = Flags 17-32

Example

Event Data1

ShowFlags Bank1

Displays:
 Flag Bank # 1

1001011000011110

If these flags are "on":
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 ShowVar
Displays the value of a State Variable on the LCD Display.

Event Syntax

Event Data1

ShowVar Name of State Variable

Example

Event Data1

ShowVar MainShowVar

Displays:
State Variable #

 1 = 125

If the index number of MainShowVar is 1, and the current value is 125.

Event Reference 5-17

E
v
e
n

t

R
e
fe

re
n

c
e

Built-In Serial Events
Built-In Serial Events send a custom message or a specially formatted value of a

State Variable out a Serial Port.

To Do This… Use This Event…

Send a custom serial message out a port MessageOut

Send the value of a State Variable formatted as an

ASCII Decimal out a port
SendAsciiDec

Send the value of a State Variable formatted as an

ASCII Hexadecimal out a port
SendAsciiHex

Send the value of a State Variable formatted as an

ASCII Octal out a port
SendAsciiOct

Send the value of a State Variable out a port as one

binary byte
SendVar

Set the value of a State Variable in another Show

Controller equal to the value of a local State Variable
PutVar

Ramp a DMX Channel DMXRamp

Generate a Break level on a serial port Break

 MessageOut
Sends a custom serial message out one of the serial ports. The message is sent

in the protocol defined for that port, but the Show Controller will not wait for an

ACK or other response.

Important Extra bytes may be added by the Show Controller to the front

and/or rear of the message depending on the protocol selected for that port.

Event Syntax

Event Data1 Data2

MessageOut Name of Port Name of Data String or Literal Message*

*See “Entering Data Strings” in Section 4-8.

Example #1

Event Data1 Data2

MessageOut Port3 DataMsg

Sends:
h4C h56 h00 h0D

If DataMsg is:
h4C h56 h00 h0D

5-18 Event Reference

Example #2

Event Data1 Data2

MessageOut Port3 h4C h56 h00 h0D

Sends:
h4C h56 h00 h0D

 MessageOutVar
MessageOutVar functions just like MessageOut only it has the ability to send

variable values within the custom message. This operates the same way as

displaying variables with LCD Strings, only with a few minor differences.

Simply precede the variable index with an hF3 for an ASCII Value, hF4 for a

right justified value with leading zeros, or hF5 for a Binary byte value. In

instances where you want to send the actual values hF3, hF4, or hF5 simply

double them as in example #4.

Example #1 – ASCII Value

Event Data1 Data2

MessageOutVar Port3 "Executed " hF3 h01 " times" h0D

(Where “4” is the current value of Var1)

Sends (ASCII) :
"Executed 4 times" h0D

Example #2 – Leading Zeros

Event Data1 Data2

MessageOut Port3 "Executed " hF4 h01 " times" h0D

(Where “21” is the current value of Var1)

Sends (ASCII) :
"Executed 021 times" h0D

Example #3 – Byte Value

Event Data1 Data2

MessageOut Port3 h49 hF5 h01

(Where “37” is the current decimal value of Var1)

Sends:
h49 h25

Event Reference 5-19

E
v
e
n

t

R
e
fe

re
n

c
e

Example #4 – Actual Value

Event Data1 Data2

MessageOut Port3 h04 hF3 hF3 h80 h0D

Sends:
h04 hF3 h80 h0D

Important: This feature can be extremely useful for writing protocol files that

you want to send variable values. If the "Supported" field in the command you

create is at least 6.40 Winscript will automatically implement this new feature.

See the User-Defined Serial Protocols section for more details.

 SendAsciiDec, SendAsciiHex,
SendAsciiOct
Sends an ASCII formatted State Variable out a serial port. The output data can

also be formatted to include leading zeros or spaces (either leading or trailing)

by inserting an optional formatting code in the Data3 column.

 SendAsciiDec -- Sends the value of a State Variable formatted as an

ASCII Decimal ("000"-"255"). For example, if the State Variable holds the

Decimal value 23, the Show Controller will send ‘h32 h33’ (or “23”) out

the port. SendAsciiDec sends a maximum of three characters.

 SendAsciiHex -- Sends a State Variable out a serial port formatted as an

ASCII Hexadecimal ("00"-"FF"). For example, if the State Variable holds

the Hexadecimal value A5, the Show Controller will send ‘h41 h35’ (or

“A5”) out the port. SendAsciiHex sends a maximum of two characters.

 SendAsciiOct -- Sends a State Variable out a serial port formatted as an

ASCII Octal ("000"-"377"). For example, if the State Variable holds the

Octal value 13, the Show Controller will send ‘h31 h33’ (or “13”) out the

port. SendAsciiOct sends a maximum of two characters.

Event Syntax

Event Data1 Data2 Data3

Event Name Name of

Port

Name of State

Variable

Optional Formatting

Code*

*LZ = Leading Zeros; LS = Leading Spaces; TS = Trailing Spaces

Example #1

Event Data1 Data2 Data3

SendAsciiDec Port3 ShowVar

Sends:
h31 h32 h33

If the value of ShowVar is decimal 123.

1500.htm

5-20 Event Reference

Example #2

Event Data1 Data2 Data3

SendAsciiHex Port3 ShowVar LZ

Sends:
h30 h44

If the value of ShowVar is h0D.

Example #3

Event Data1 Data2 Data3

SendAsciiOct Port3 ShowVar TS

Sends:
h31 h33 h20

If the value of ShowVar is octal 13.

 SendVar
Sends the value of a State Variable out a serial port as one binary byte.

Event Syntax

Event Data1 Data2

SendVar Name of Port Name of State Variable

Example

Event Data1 Data2

SendVar Port3 ShowVar

Sends:
h31

If the value of ShowVar is decimal 49.

 PutVar
Sets the value of a State Variable in another Show Controller equal to the value

of a local State Variable.

Event Syntax

Event Data1 Data2 Data3 Data4

PutVar Name of Port Unit Address of

Remote Show
Controller

Name of

Remote State
Variable*

Name of

Local State
Variable

* To address a remote Show Controller resource by its name, configure the port using

AMI Product Wizard.

Event Reference 5-21

E
v
e
n

t

R
e
fe

re
n

c
e

Example

Event Data1 Data2 Data3 Data4

PutVar Port3 2 SlaveShowVar ShowVar

Sets "SlaveShowVar", located in a remote Show Controller connected to Port3, equal to

the value of "ShowVar", a local State Variable.

 DMXRamp
Sets a DMX dimmer to a given value over a given period of time.

Event Syntax

Event Data1 Data2 Data3

DMXRamp Channel

Number
(1-512)

Final Value* Optional Ramp Duration**

*Final Value can be in Percent (0% - 100%), Decimal (0 - 255) or Hex (h00 - hFF).

**The Ramp Duration should be in Minutes:Seconds.Frames (e.g. 03:04.15) and can

have a maximum value of 65535 frames (36:26.20 max @ 29.97 and 30 fps; 45:30.15

max @ 23.976 and 24 fps; 43:41.10 max @ 25 fps). If no ramp duration is entered, the
channel is immediately set to the final value.

Example

Event Data1 Data2 Data3

DMXRamp 250 35% 02:06.15

Ramps DMX channel 250 to 35% brightness over a period of two minutes, six seconds,

and fifteen frames.

 Break – (New in version 6.35)
Sends a Break on the specified serial port. Break is not “queued”, so wait until

all previous data has finished transmitting before it is issued. Special warning:

Since frame 0 and 1 of a sequence are really the same, and since serial messages

are synchronized using a one frame delay, if you put a Msgout at frame 0 and a

Break at frame 1, the break will actually occur first! A standard SMPTE break is

17-21 bits at the current data rate. At 38.4K baud this corresponds to a Data2

value of 2. For 9600 baud use a value of 8.

Event Syntax

Event Data1 Data2 Data3 Data4

Break Name of Port Duration of break in

multiples of 250 usec

5-22 Event Reference

MIDI Events
MIDI Events send standard MIDI control messages out a MIDI port (or any

other port configured for the MIDI protocol).

To Do This… Use This Event…

Send a MIDI "Note On" message out a port NoteOn

Send a MIDI "Note Off" message out a port NoteOn

Send a MIDI "Program Change" message out a port ProgramChange

Send a MIDI "Control Change" message out a port ControlChange

 NoteOn
Sends a MIDI “Note On” message out a MIDI port (or any serial port configured

for the MIDI protocol). To turn off a MIDI note, set the Note Velocity to 0.

Event Syntax

Event Data1 Data2 Data3 Data4

NoteOn Port Name Channel Number

(1-16)

Note Number

(0-127)

Note Velocity

(0-127)*

*A Note Velocity of 0 is equivalent to a “Note Off”.

 ControlChange
Sends a MIDI “Control Change” message out a serial port.

Event Syntax

Event Data1 Data2 Data3 Data4

ControlChange Port
Name

Channel

Number

(1-16)

Control

Change Value

(0-127)

Controller
Number (0-127)

 ProgramChange
Sends a MIDI “Program Change” message out a serial port.

Event Syntax

Event Data1 Data2 Data3

ProgramChange Port
Name

Channel Number
(1-16)

Program Change Value
(0-127)

Event Reference 5-23

E
v
e
n

t

R
e
fe

re
n

c
e

SMPTE Serial Events
SMPTE events control SMPTE timecode in an Alcorn McBride SMPTE

Machine or Digital Binloop.

Note To use SMPTE Events, you will need to manually configure the protocol

of the port to Alcorn McBride SMPTE Machine or Alcorn McBride
Digital Binloop.

To Do This… Use This Event…

Set the current SMPTE time in an Alcorn McBride

SMPTE Machine or Digital Binloop
SetSMPTETime

Start Reading/Generating SMPTE in an Alcorn

McBride SMPTE Machine or Digital Binloop
EnableSMPTE

Stop Reading/Generating SMPTE in an Alcorn

McBride SMPTE Machine or Digital Binloop
DisableSMPTE

Pause SMPTE generation at the current frame in an

Alcorn McBride SMPTE Machine or Digital Binloop
PauseSMPTE

 SetSMPTETime
Sets the current SMPTE time to a new value. If currently generating SMPTE,

the time will immediately jump to the new value, otherwise a subsequent

EnableSMPTE event will start SMPTE generation from the new time. If the

SMPTE Machine or Digital Binloop is configured to read SMPTE, the event is

ignored.

Event Syntax

Event Data1 Data2

SetSMPTETime Name of Port connected

to SMPTE Machine or
Digital Binloop

Time to Generate

From*

*Time to Generate From should be in HH:MM:SS.FF, with leading zeros (e.g.

04:23:35.15).

Example

Event Data1 Data2

SetSMPTETime SMPTEPort 12:23:00.00

Sets current SMPTE time to 12:23:00.00

5-24 Event Reference

 EnableSMPTE
Starts SMPTE reading/generation. Generation begins from the current SMPTE

time in the SMPTE Machine. If the SMPTE Machine is already generating or

reading SMPTE, the event is ignored.

Event Syntax

Event Data1

EnableSMPTE Name of Port connected to SMPTE Machine or

Digital Binloop

 DisableSMPTE
Stops SMPTE reading/generation. If SMPTE is already stopped, the event is

ignored.

Event Syntax

Event Data1

DisableSMPTE Name of Port connected to SMPTE Machine or

Digital Binloop

 PauseSMPTE
Pauses SMPTE generation at the next loop point. A subsequent EnableSMPTE

event will resume SMPTE from the start frame.

Event Syntax

Event Data1

PauseSMPTE Name of Port connected to SMPTE Machine or

Digital Binloop

 IdleSMPTE
Freezes SMPTE generation at the current frame. A subsequent EnableSMPTE

event restarts generation from the start frame.

Event Syntax

Event Data1

IdleSMPTE Name of Port connected to SMPTE Machine or Digital

Binloop

Event Reference 5-25

E
v
e
n

t

R
e
fe

re
n

c
e

LightCue Serial Events
LightCue events control DMX recording, cue selection, and playback in an

Alcorn McBride LightCue. For more information about these and other

functions of the LightCue, please consult the LightCue User’s Guide.

Note To use LightCue Events, you will need to configure the protocol of the

port to Alcorn McBride LightCue.

To Do This… Use This Event…

Select a cue SelectCue

Play the currently selected cue Play

Play and loop the currently selected cue PlayAndLoop

Begin recording DMX to a cue Record

Play the currently selected cue, jam-syncing to SMPTE ChasePlay

Map DMX input to DMX output, without recording FeedThrough

Pile-on additional cues to the current cue PileOn

Pile-on additional cues to the current cue and loop PileOnAndLoop

Clear a cue in a currently playing pile-on ClearCue

Still the currently playing cue at the current look Still

Stop all currently playing cues and hold the last look Reset

 SelectCue
Selects which cue should be played when a Play command is received.

Event Syntax

Event Data1 Data2

SelectCue Name of Port connected to

LightCue

Cue Number (1-511)

5-26 Event Reference

 Play
Plays the currently selected cue. If a crossfade time is entered into Data2, the

current look will crossfade into the currently selected cue during the specified

crossfade time. If no cue is currently selected, an optional cue number may be

placed in Data2, with a corresponding crossfade time placed in Data3. If there

is no currently selected cue and Data2 does not contain a valid cue number, cue

#1 is played immediately without a crossfade.

Event Syntax

Event Data1 Data2 Data3

Play Name of Port

connected to
LightCue

Optional Cue

Number <or>
Crossfade Time*

Crossfade Time*

* Crossfade Time should be in HH:MM:SS.FF, with leading zeros (e.g. 04:23:35.15).

 PlayAndLoop
Plays and loops the currently selected cue. If a crossfade time is entered into

Data2 , the current look will crossfade into the currently selected cue during the

specified crossfade time. If no cue is currently selected, an optional cue number

may be placed in Data2 , with a corresponding crossfade time placed in Data3 .

If there is no currently selected cue and Data2 does not contain a valid cue

number, cue #1 is played immediately without a crossfade. When the cue has

finished playing, it loops back to the beginning.

Event Syntax

Event Data1 Data2 Data3

PlayAndLoop Name of Port

connected to
LightCue

Optional Cue

Number <or>

Crossfade
Time*

Crossfade

Time*

* Crossfade Time should be in HH:MM:SS.FF, with leading zeros (e.g. 04:23:35.15).

 Record
Begins recording a valid incoming DMX stream to the specified cue.

Event Syntax

Event Data1 Data2

Record Name of Port connected to
LightCue

Cue Number

Event Reference 5-27

E
v
e
n

t

R
e
fe

re
n

c
e

 ChasePlay
Plays a cue, jam-synced to SMPTE. If a chase offset is entered into Data2, and

a crossfade time is entered into Data3, the current look will crossfade into the

currently selected cue during the specified crossfade time - when the incoming

SMPTE timecode reaches the specified chase offset. This effectively overrides

the SMPTE start trigger embedded into a cue number when it is recorded. If no

cue is currently selected, an optional cue number may be placed in Data2, with

a corresponding chase offset placed in Data3, and a corresponding crossfade

time placed in Data4. If there is no currently selected cue and Data2 does not

contain a valid cue number or chase offset, cue #1 is selected for SMPTE-

triggered playback without a crossfade.

Event Syntax

Event Data1 Data2 Data3 Data4

ChasePlay Name of Port

connected to

LightCue

Optional Cue

Number <or>

Chase Offset
HH:MM:SS.FF*

Chase Offset

HH:MM:SS.FF*

<or> Crossfade

Time
HH:MM:SS.FF*

No Parameter <

or> Crossfade

Time
HH:MM:SS.FF*

* Crossfade Time and Chase Offset should be in HH:MM:SS.FF, with leading zeros (e.g.

04:23:35.15).

 FeedThrough
Patches the DMX Input to the DMX Output, without recording to a cue.

Event Syntax

Event Data1 Data2

FeedThrough Name of Port connected to

LightCue

 PileOn
Causes the LightCue to play a new cue simultaneously with other currently

playing cues. Up to 6 cues may be piled-on at one time. Each of the 512

channel values of each cue that is playing is compared against the corresponding

channel in the other playing cues, and the highest value is output. A separate

PileOn event is needed for each cue. Cues may be removed from a pile-on by

using the ClearCue event.

Event Syntax

Event Data1 Data2

PileOn Name of Port connected to

LightCue

Cue Number

5-28 Event Reference

 PileOnAndLoop
Causes the LightCue to play a new cue simultaneously with other currently

playing cues. Up to 6 cues may be piled-on at one time. Each of the 512

channel values of each cue that is playing is compared against the corresponding

channel in the other playing cues, and the highest value is output. A separate

PileOn event is needed for each cue. Cues may be removed from a pile-on by

using the ClearCue event. As each cue ends, it is individually looped back to

the beginning.

Event Syntax

Event Data1 Data2

PileOnAndLoop Name of Port connected to

LightCue

Cue Number

 ClearCue
Clears a cue from a currently playing pile-on.

Event Syntax

Event Data1 Data2

ClearCue Name of Port connected to
LightCue

Cue Number

 Still
Stills playback at the current look. A subsequent Play command will restart

playback from the current look.

Event Syntax

Event Data1 Data2

Still Name of Port connected to

LightCue

 Reset
Stops playback, holding the current look.

Event Syntax

Event Data1 Data2

Reset Name of Port connected to

LightCue

Event Reference 5-29

E
v
e
n

t

R
e
fe

re
n

c
e

Digital Video Machine Serial Events
Digital Video Machine events control video playback and clip/drive selection in

an Alcorn McBride Digital Video Machine. For more information about these

and other functions of the Digital Video Machine, please consult the Digital

Video Machine User’s Guide.

Note To use Digital Video Machine Events, you will need to configure the

protocol of the port to Alcorn McBride Digital Video Machine.

To Do This… Use This Event…

Select a clip SelectClip

Select the Internal/Removable drive for playback SelectDrive

Play the currently selected clip Play

Play and loop the currently selected clip PlayAndLoop

Still video playback at the current position Still

 SelectClip
Selects which clip should be played when a Play command is received.

Event Syntax

Event Data1 Data2

SelectClip Name of Port connected to

Digital Video Machine

Clip Number (1-511)

 SelectDrive
Selects which drive should play back the currently selected clip when a Play

command is received.

Event Syntax

Event Data1 Data2

SelectDrive Name of Port connected to

Digital Video Machine

Internal <or>

Removable

5-30 Event Reference

 Play
Plays the currently selected clip (or any other clip) from the currently selected

drive. If no clip is currently selected and Data3 does not contain a valid clip

number, the first clip on the currently selected drive is played.

Event Syntax

Event Data1 Data2

Play Name of Port connected to

Digital Video Machine

Optional Clip

Number

 PlayAndLoop
Plays the currently selected clip (or any other clip) from the currently selected

drive. When the clip has finished playing, it is restarted. If no clip is currently

selected and Data3 does not contain a valid clip number, the first clip on the

currently selected drive is played and looped.

Event Syntax

Event Data1 Data2

PlayAndLoop Name of Port connected to

Digital Video Machine

Optional Clip

Number

 Still
Stills playback at the current position. A subsequent Play command will restart

playback from the current position.

Event Syntax

Event Data1 Data2

Still Name of Port connected to

Digital Video Machine

Event Reference 5-31

E
v
e
n

t

R
e
fe

re
n

c
e

Digital Binloop Serial Events
Digital Binloop events control audio/video playback in an Alcorn McBride

Digital Binloop (SMPTE generate/read events for the Digital Binloop are

discussed in the SMPTE Serial Events section, earlier in this reference). Some

versions of the Digital Binloop support additional events. For more information

about these and other functions of the Digital Binloop, please consult the Digital

Binloop User’s Guide.

Note To use Digital Binloop Events, you will need to configure the protocol of

the port to Alcorn McBride Digital Binloop.

To Do This… Use This Event…

Play a sound/video clip from a reproducer or group of

reproducers
Play

Play and loop a sound/video clip from a reproducer or

group of reproducers
PlayAndLoop

Pause audio/video playback from a reproducer or group

of reproducers
Pause

Mute audio playback from a reproducer or group of

reproducers
Mute

Play a SMPTE or Video-synchronized sound/video clip

from a reproducer or group of reproducers
SPlay

Play and loop a SMPTE or Video-synchronized

sound/video clip from a reproducer or group of
reproducers

SPlayAndLoop

Un-Mute audio playback from a reproducer or group of

reproducers
UnMute

 Play
Plays a sound or video clip from a reproducer or group of reproducers.

Event Syntax

Event Data1 Data2 Data3 Data4

Play Name of Port

connected to

Digital Binloop

Reproducer

Number

(R1-R16)

<or>

Group

Number

(G1-G13)
<or> "All"

"Primary"

socket <or>

"Secondary"

socket <or>

"Consecutive"
sockets

Sound/Video

Clip Number

(1-511)

5-32 Event Reference

Example

Event Data1 Data2 Data3 Data4

Play Binloop1 R2 Primary 10

Plays clip 10 from Reproducer 2, Primary Socket.

 PlayAndLoop
Plays a sound or video clip from a reproducer or group of reproducers. When

the clip has finished playing, it is restarted.

Event Syntax

Event Data1 Data2 Data3 Data4

PlayAndLoop Name of

Port

connected

to Digital
Binloop

Reproducer

Number

(R1-R16)

<or>

Group

Number

(G1-G13)
<or> "All"

"Primary"

socket <or>

"Secondary"

socket <or>

"Consecutive"
sockets

Sound/Video

Clip Number

(1-511)

Example

Event Data1 Data2 Data3 Data4

PlayAndLoop Binloop1 All Consecutive 5

Plays and loops clip 5 from all Reproducers, first from Primary then Secondary sockets.

 Pause
Pauses audio/video playback at the current position. A subsequent Play

command will restart playback from the current position.

Event Syntax

Event Data1 Data2

Pause Name of Port connected to

Digital Binloop

Reproducer Number

(R1-R16) <or> Group

Number (G1-G13)

<or> "All"

Example

Event Data1 Data2 Data3 Data4

Pause Binloop1 G3

Pauses all Reproducers in Group 3.

Event Reference 5-33

E
v
e
n

t

R
e
fe

re
n

c
e

 Mute
Mutes audio playback from a reproducer or group of reproducers.

Event Syntax

Event Data1 Data2

Mute Name of Port connected to

Digital Binloop

Reproducer Number

(R1-R16) <or> Group

Number (G1-G13)

<or> "All"

 UnMute
Un-Mutes audio playback from a reproducer or group of reproducers.

Event Syntax

Event Data1 Data2

UnMute Name of Port connected to

Digital Binloop

Reproducer Number

(R1-R16) <or>

Group Number (G1-
G13) <or> "All"

 SPlay
Plays a sound or video clip from a reproducer or group of reproducers. Audio

playback is frame-synchronized to a SMPTE or Composite Video Sync signal.

Event Syntax

Event Data1 Data2 Data3 Data4

SPlay Name of Port

connected to

Digital
Binloop

Reproducer

Number

(R1-R16)

<or>

Group

Number

(G1-G13)
<or> "All"

"Primary"

socket <or>

"Secondary"

socket <or>

"Consecutive"

sockets

Sound/Video

Clip Number
(1-511)

Example

Event Data1 Data2 Data3 Data4

SPlay Binloop1 R2 Primary 10

Plays clip 10 from Reproducer 2, Primary Socket synchronized to Video Sync or SMPTE.

5-34 Event Reference

 SPlayAndLoop
Plays a sound or video clip from a reproducer or group of reproducers. When

the clip has finished playing, it is restarted. Audio playback is frame-

synchronized to a SMPTE signal.

Event Syntax

Event Data1 Data2 Data3 Data4

SPlayAndLoop Name of

Port

connected

to Digital
Binloop

Reproducer

Number

(R1-R16)

<or>

Group

Number

(G1-G13)
<or> "All"

"Primary"

socket <or>

"Secondary"

socket <or>

"Consecutive"

sockets

Sound/Video

Clip Number
(1-511)

Event Reference 5-35

E
v
e
n

t

R
e
fe

re
n

c
e

Other Serial Device Events
WinScript supports almost any serial device automatically by using a Protocol

(or PCL) file. PCL files contain all the information WinScript needs to create

device-specific events that send command messages to the external device.

When you configure a port for a device’s protocol, WinScript loads the PCL file

and adds the new events to Event Wizard.

WinScript ships with a standard group of PCL files (including the SMPTE,

DVD, Digital Video Machine, and Digital Binloop PCL files described in the

above sections) that support many common devices. You can use these PCL

files as is, customize them, or create your own (for more information, see

Appendix A). As always, you can download new or updated PCL files from our

home page (www.alcorn.com).

For an up-to-date list of all PCL files currently installed on your PC (and

individual listings of all their events and parameters), choose Tools | Protocol
Editor from the WinScript main menu.

http://www.alcorn.com)/

Advanced WinScript Programming 6-1

A
d

v
a
n

c
e
d

P
ro

g
ra

m
m

in
g

Advanced WinScript Programming

In this section, one of our experienced show programmers takes you through

several common techniques for efficiently scripting a complex show by

combining Show Controller resources and clever algorithms. You’ll find such

tips as:

 Synchronized video playback from multiple sources.

 Extending the life span of show equipment by using Day and Night Modes.

 Creating “randomized” sequences

 Creating a real-time clock.

 Tight control of show elements.

6-2 Advanced WinScript Programming

Introduction
This section is designed to illustrate some advanced techniques of script

programming that we have come to rely upon as the most robust and

straightforward way of utilizing our equipment in shows.

Terms Used

The term “PC or Program Counter” is used to refer to the current event that each

sequence is on. If it is at the top of the sequence, it means that the PC is

pointing to the first event. It could be anywhere between the top of the sequence

and the last event. The PC advances every time the event it is pointing to has

event time equal to (or prior to) the TC, described below. At that time, it

executes the event. The PC can only move forward in the sequence. It will

automatically move to the next event when the last is completed, or it can jump

forward.

The term “TC or Time Counter” is used to refer to the current time in frames

that each sequence is at. The TC always starts at zero when the PC is at the top

of the sequence, meaning that the time is 00:00.00 when each sequence begins

running. The TC increments one frame every time the Show Controller

advances one frame, and does not change based upon the time any event is set

to. Any time that the TC encounters an event that has a time less than or equal

to it, the event is executed on that frame. The TC always moves forward, and

does so as long as the sequence is running. If the event being executed is an

external serial command that takes longer than one frame to execute, the TC

continues to move forward during that time.

Although these techniques apply to all Alcorn McBride Show Controllers, most

of these examples assume that the controller is a V16+, unless indicated

otherwise.

Finally, even though all of the examples in this section are written for

WinScript, the scripting strategy involved is exactly the same for DOS Script.

Most users should be able to reformat these examples for use in any version of

DOS Script or WinScript.

Advanced WinScript Programming 6-3

A
d

v
a
n

c
e
d

P
ro

g
ra

m
m

in
g

Get Control of Your Sequences
When scripting a show, the show normally flows from beginning to end in a

straightforward manner, chronologically. However, there are times when the

normal show flow is halted abruptly, and changed to some other condition. If

the change is not handled properly, two problems could occur. The first is when

things start happening when they’re not supposed to, and the second when

things won’t happen when they’re supposed to.

When things happen on their own, it’s usually because sequences are running

that you didn’t know were running. I often get phone calls from people who say

“My show ran fine all day long, but when I put it in Night Mode it started

running again all by itself 20 minutes later”.

When things don’t happen when they’re supposed to, it’s usually because the

sequence you’re trying to run is already running. If Restart is not enabled in the

setup for that sequence, it won’t run if it’s already running. I will hear “My

show is supposed to loop over and over again. It runs fine the first time, but

won’t loop and run again.”

The solution to both problems is to make sure all sequences that could be

running are reset when the abrupt change occurs. This is especially important

for looping sequences, which never stop running until they are reset. What I do

for an absolute guarantee is to have a ResetAllSequences sequence that resets all

sequences (except the one that calls ResetAllSequences of course). Sometimes I

will not reset tiny sequences that are short in time, and don’t run other

sequences, but this can be attributed to laziness. Here is an example of

ResetAllSequences:

After calling ResetAllSequences, it is a good idea to wait a few frames before

doing anything else, to give all events that were running in those sequences time

to settle, especially serial commands to external devices like players. This is

shown in the following sequence, AbruptHaltToShow:

AbruptHaltToShow
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Start ResetAllSequences

 00:00.02 Still dvm1

 00:00.02 Still DVM

 00:00.02 Still dvm3

ResetAllSequences
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Reset DayMode

 00:00.00 Reset NightMode

 00:00.00 Reset WaitLdps

 00:00.00 Reset StartShow

 00:00.00 Reset PreShow

 00:00.00 Reset MainShow

 00:00.00 Reset PostShow

 00:00.00 Reset Maintenance

6-4 Advanced WinScript Programming

Day and Night Mode
Most shows that only run during a portion of the day should have a Day and

Night mode of operation. There is no reason to have audio, video, lighting

effects, etc. playing all night long. It can reduce the life of the equipment, be

very annoying, and even be potentially hazardous if there is no operator

supervision.

The best approach for a show that doesn’t have some other computer to tell the

Show Controller when to go to Daymode or Nightmode is to have a button

perform the function. It is better to have one button toggle between Daymode

and Nightmode than to have two buttons because you can potentially confuse

the Show Controller if the two buttons are pushed near the same time, unless

you go to great programming lengths to prevent it. Here are some sequences

that explain how to use one button for both Daymode and Nightmode:

SelectDayorNightMode
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Start ResetAllSequences

 00:00.02 IfOff GoingDayFlag GoDay

GoNight 00:00.02 Start NightMode Go to

Sleep

 00:00.02 Goto End

GoDay 00:00.02 Start DayMode Wake Up

End 00:00.02 Toggle GoingDayFlag Flip Flag

DayMode
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Display GoingToDayModeMsg

 00:00.00 Start Spinupdvm1

 00:00.00 Start SpinupDVM

 00:00.00 Start Spinupdvm3

 00:00.00 Start TurnLightsOn

 00:00.00 Start GoBGM

 00:00.00 Display AtDayModeMsg

NightMode
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Display GoingToNightModeMsg

 00:00.00 Start Spindowndvm1

 00:00.00 Start SpindownDVM

 00:00.00 Start Spindowndvm3

 00:00.00 Start TurnLightsOff

 00:00.00 Start OffBGM

 00:00.00 Display AtNightModeMsg

Advanced WinScript Programming 6-5

A
d

v
a
n

c
e
d

P
ro

g
ra

m
m

in
g

Synchronized Scripting
More often than not, our Show Controllers interface to multiple digital video

players at one time. When these players are commanded to play

unsynchronized, there is little concern with timing. Here is an example of two

unsynchronized video players.

AutoExec (Autostart Enabled)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Search Dvm1 1

 00:00.00 Search DVM 2

 00:00.00 Start LeftKiosk

 00:00.00 Start RightKiosk

LeftKiosk (Looping Enabled)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Play dvm1 Presentation On Chess

 02:05.12 Search dvm1 1 Loop Presentation

RightKiosk (Looping Enabled)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Play DVM Presentation on Checkers

 01:34.25 Search DVM 2 Loop Presentation

Synchronized Video Playback

When Digital Video Machines are asked to output video and audio together, it is

important that they are commanded to play simultaneously in order to achieve

frame-to-frame synchronization of audio and video.

The following sequence causes the second player to play after the first, which

causes unsynchronized playback. Even though the Play events happen on the

same frame, the first Play event may take a frame or two for the Show

Controller to send out the serial play message. The DVM will begin playing,

return an Acknowledge, and only then can the second Play event begin to occur,

throwing the sync out the window.

UnSynchronized
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Play dvm1

 00:00.00 Play DVM

The following sequences show the correct way to script this. The serial

messages will go out both ports simultaneously, and the players will begin

playing in synchronization.

Synchronized
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Start PlayDVM1

 00:00.00 Start PlayDVM

PlayDVM1
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Play dvm1

6-6 Advanced WinScript Programming

PlayDVM
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Play DVM

Synchronized Searching

Although synchronized playback is the only required element in order for the

show to perform correctly, synchronized searching is almost always required.

Unsynchronized searching in most show scenarios takes too long. It is much

better for the players to begin and end searching at about the same time. Here is

an example of unsynchronized searching.

Unsynchronized
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Search Dvm1 1

 00:00.00 Search DVM 2

 00:00.00 Search Dvm3 3

 00:00.00 Search Dvm4 4

 00:00.00 Search Dvm5 5

 00:05.00 Start MainShow Go Play ‘Em

Depending on which video player you are using, this could take forever! For

our purposes, let’s say that the searches take one second each. This sequence

will take five seconds to complete. If the audience is in the theatre while these

searches take place, this is unacceptable! Here is an example of synchronous

searching. This sequence will complete in one second. Much better!

Synchronized
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Start MainSearch1

 00:00.00 Start MainSearch2

 00:00.00 Start MainSearch3

 00:00.00 Start MainSearch4

 00:00.00 Start MainSearch5

 00:01.00 Start MainShow Go Play ‘Em

MainSearch1
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Search Dvm1 1

MainSearch2
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Search DVM 2

MainSearch3
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Search Dvm3 3

MainSearch4
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Search Dvm4 4

MainSearch5
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Search Dvm5 5

Advanced WinScript Programming 6-7

A
d

v
a
n

c
e
d

P
ro

g
ra

m
m

in
g

Searching As Quickly As Possible

The above examples show you how to search all players at the same time,

instead of one after the other, to save time. Using that method you still allow

enough time for the searches to take place before issuing the Play commands.

Sometimes you just can’t afford to wait a moment longer than you have to

because you don’t want the audience to see the show lag due to the searches. To

reduce this lag to an absolute minimum, use the following sequences. This

method uses flags to determine when all the searches are done, even if some

take longer than others. These sequences add a lot of code to your script, but

you have to do what you have to do.

SynchronizedAndFast
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Off Dvm1Done

 00:00.00 Off DVMDone

 00:00.00 Off Dvm3Done

 00:00.00 Off Dvm4Done

 00:00.00 Off Dvm5Done

 00:00.00 Start MainSearch1

 00:00.00 Start MainSearch2

 00:00.00 Start MainSearch3

 00:00.00 Start MainSearch4

 00:00.00 Start MainSearch5

 00:00.00 Start WaitForSearches

MainSearch1
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Search dvm1 1

 00:00.00 On DVM1Done

MainSearch2
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Search DVM 2

 00:00.00 On DVMDone

MainSearch3
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Search dvm3 3

 00:00.00 On DVM3Done

MainSearch4
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Search dvm4 4

 00:00.00 On DVM4Done

MainSearch5
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Search dvm5 5

 00:00.00 On DVM5Done

WaitForSearches (Looping Enabled)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 IfOff DVM1Done TryAgain

 00:00.00 IfOff DVMDone TryAgain

 00:00.00 IfOff DVM3Done TryAgain

6-8 Advanced WinScript Programming

 00:00.00 IfOff DVM4Done TryAgain

 00:00.00 IfOff DVM5Done TryAgain

 00:00.00 Start MainShow Go Play ‘Em

 00:00.02 Pause WaitForSearches Stop Checking

TryAgain 00:00.00 Nop

Modularity
Modularity is a word you probably thought you'd only hear in programmers'

circles. Well, in many ways, scripting is in fact programming; many of the same

concepts apply. Modularity is an attempt to place programming code in

appropriate sections that make sense. If you were making a “House” program,

you would have a “Kitchen” module with code in it that applied to kitchen

appliances, and a “Bathroom” module with code that applied to bathroom

appliances. You would not want your “blender” code residing in your Bathroom

module. It makes it hard to read, hard to understand, and most importantly, hard

to change later. That is, unless you make margaritas in your bathroom’s jet spa!

Script programming is much simpler than real computer language programming,

but scripts can become large and unwieldy too, so modularity begins to play a

bigger importance, as your scripts become more complex.

Let’s assume that we are asked to program a script for a "Zoo Animals" pre-

show that has five video segments all coming off the same DVD player, being

shown to an audience on ten different monitors where all the monitors display

the same video. Let’s further assume that the pre-show is started manually by

an operator, after the audience has filled the pre-show area. We will use a V4+

for this job. For simplicity, we’ll also assume a frame rate of 30 frames per

second, even though the players really run at 29.97.

Note When working with a real show such as this one, always use the exact

frame rate of the players, projectors, or whatever media source you are using.

Even miniscule differences in frame rate can have a profound impact on the

quality of your show.

Advanced WinScript Programming 6-9

A
d

v
a
n

c
e
d

P
ro

g
ra

m
m

in
g

Our “Zoo Animals” video segments have the following properties:

Segment Name Length
(mm:ss.ff)

1 Monkeys 02:46.20

2 Elephants 00:33.10

3 Tigers 01:40.00

4 Democrats 02:46.20

5 Zoo Summary 05:33.10

Non-Modular Approach

This approach searches and plays the five segments in order in one sequence

called MainShow. MainShow is started by Input9, which is an external button

that is pushed by an operator on an OCC console. The delay between Search

and Play commands is necessary to wait for the searches to take place. If the

delay were not put in, the Play command, which would not start until after the

Search was completed, would occur at the wrong time; effectively ruining the

segment.

Although this sequence works, it has some undesirable qualities. The

mandatory two second wait for searches to take place means that guests will be

forced to watch a two second pause in their show, instead of the minimum time

it takes to actually perform the searches, which could be as low as one frame. In

addition, the programmer had to figure out the playing time of each segment,

and if a segment is added or deleted, or a segment is shortened or lengthened,

the programmer will have to re-calculate those Search and Play times every

time a change is made to the show.

MainShow (Start Trigger: Button 1)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Search dvm1 1 Monkey Segment

 00:02.00 Play dvm1 Wait 2 seconds for search

 02:48.20 Search dvm1 2 Elephant Segment

 02:50.20 Play dvm1 Wait 2 seconds for search

 03:24.00 Search dvm1 3 Tiger Segment

 03:26.00 Play dvm1 Wait 2 seconds for search

 05:06.00 Search dvm1 4 Democrat Segment

 05:08.00 Play dvm1 Wait 2 seconds for search

 07:54.20 Search dvm1 5 Summary Segment

 07:56.20 Play dvm1 Wait 2 seconds for search

 13:30.00 Search dvm1 1 Search to Black- Done!

Modular Approach #1

This approach breaks up the show into six sequences, one of which is the trigger

sequence, and the rest are dedicated to individual video segments. It has the

advantage of having search times that occur as fast as possible, without any

delay required. The Start event will happen whenever the search is completed,

but since the sequence it starts resets the event time back to zero, the events

occur at the appropriate time regardless of how long the searches take. The

6-10 Advanced WinScript Programming

programmer has only to enter the play times once, and their the length of each

segment, so no calculation needs to be done. In addition, this approach makes it

easy to add or remove segments by changing the search frames and reconnecting

which sequence starts any other sequence. It does have one disadvantage,

though: The programmer must look through all the sequences to analyze the

flow of the show, whereas the non-modular approach lets the programmer see

the whole show at a glance.

This method is how most Script programmers create their shows.

MainShow (Start Trigger: Input 9)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Search dvm1 1 Monkey Segment

 00:00.00 Start Monkey

Monkey
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Play dvm1

 02:46.20 Search dvm1 2 Elephant Segment

 02:46.20 Start Elephant

Elephant
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Play dvm1

 00:33.10 Search dvm1 3 Tiger Segment

 00:33.10 Start Tiger

Tiger
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Play dvm1

 01:40.00 Search dvm1 4 Democrat Segment

 01:40.00 Start Democrat

Democrat
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Play dvm1

 02:46.20 Search dvm1 5 Summary Segment

 02:46.20 Start Summary

Summary
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Play dvm1

 05:33.10 Search dvm1 1 Video Black-Done!

Modular Approach #2

This approach also breaks up the show into six sequences, one of which is the

trigger sequence, and the rest are dedicated to individual video segments. The

flow of the show can be seen by looking at MainShow, yet all the time

programming still occurs in the individual sequences. The searches are all as

fast as possible. The programmer has only to enter the beginning and ending

frame numbers of each video segment, and adding segments or changing the

order is simply a matter of changing MainShow! The two frame delay

between segments in MainShow allow the individual sequences time to pause

MainShow. Since ScriptOS is a multi-tasking operating system, MainShow

would start all video segments at once if there was no brief delay.

Advanced WinScript Programming 6-11

A
d

v
a
n

c
e
d

P
ro

g
ra

m
m

in
g

This method is how I design shows.

MainShow (Start Trigger: Input 9)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Search dvm1 1 Monkey Segment

 00:02.00 Start Monkey

 00:02.02 Start Elephant

 00:02.04 Start Tiger

 00:02.06 Start Democrat

 00:02.08 Start Summary

 00:02.10 Search dvm1 1 Video Black-Done!

Monkey
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Stop MainShow Freezes MainShow time

 00:00.00 Search dvm1 1 Monkey Segment

 00:00.00 Play dvm1 2

 00:00.00 Start MainShow UnFreezes MainShow

Elephant
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Stop MainShow Freezes MainShow time

 00:00.00 Search dvm1 2 Elephant Segment

 00:00.00 Play dvm1 3

 00:00.00 Start MainShow UnFreezes MainShow

Tiger
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Stop MainShow Freezes MainShow time

 00:00.00 Search dvm1 3 Tiger Segment

 00:00.00 Play dvm1 4

 00:00.00 Start MainShow UnFreezes MainShow

Democrat
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Stop MainShow Freezes MainShow time

 00:00.00 Search dvm1 4 Democrat Segment

 00:00.00 Play dvm1 5

 00:00.00 Start MainShow UnFreezes MainShow

Summary
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Stop MainShow Freezes MainShow time

 00:00.00 Search dvm1 5 Summary Segment

 00:00.00 Play dvm1 6

 00:00.00 Start MainShow UnFreezes MainShow

Randomization
The only reasonable way to do randomization is to increment a state variable

once per frame, letting it wrap at 256, continuously, and then checking the value

when a random number is desired. Since the increment of a state variable once

per frame is predictable when you look at the value at normalized intervals (i.e.

the value is 34 at frame 0, and if you check again at frame 30 it’s 64), you will

only get truly random numbers if you check based upon a non-timed, random

event. For example, if you check the variable when an operator pushes a button,

6-12 Advanced WinScript Programming

that will generate a good random number because the operator could push the

button any time, and will never push it twice at the same time. The following

sequence will generate a random number:

Random (Autostart Enabled; Looping Enabled)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 AddVar RandomVar 1 increment RandomVar

The following sequences will get a random number when an operator pushes a

button attached to input9. The desired range of random numbers is 0 - 9, so we

will have to trim it down from 0 - 255.

GetRandom (Start Trigger: Input9)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 SetVarEQ MyVar RandomVar

 00:00.00 Start ForceRange

ForceRange Forces MyVar to be in range 0-9; (Looping Enabled)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 IfVarLE MyVar 9 if <= 9, we’re done

 00:00.00 SubVar MyVar 9

 00:00.00 Goto End Do it again Sam

Done 00:00.00 Start GotRandom

 00:00.02 Nop wait 2 frames here

End 00:00.00 Nop loop here

GotRandom Random number now in range 0-9; (Looping Enabled)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Reset ForceRange Don’t Loop Anymore

 00:00.00 Nop Use MyVar Here

Now let's take these sequences, and add them to our Zoo Animals show above to

show an example of randomization. Assume the Art Director wants the first

four video segments to play at random, not allowing any segment to play more

than once, and then play the summary.

We can’t get a random number four times for two reasons. One, only the first

random number will be truly random, because it is based upon an operator

pressing a button, the remaining three random numbers would all be gotten at a

predictable time after the first one was gotten. Second, if we get four random

numbers, we could get a random number to play a segment we’ve already

played. Checking to see if we have already played a segment, and choosing

another one if so would force us to write way too many sequences. The correct

approach is to get one random number when the operator presses the button,

thereby guaranteeing it is a truly random number, and then using that one

number to determine what order all four segments will be shown in. The

maximum combinations of four selections, each with one unique position are 24.

We’ll also use the Modular Approach #2 for this job. This example shows how

useful the approach can be.

Random (Autostart Enabled; Looping Enabled)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 AddVar RandomVar 1 increment RandomVar

Advanced WinScript Programming 6-13

A
d

v
a
n

c
e
d

P
ro

g
ra

m
m

in
g

StartShow Takes random number from button push; (Start trigger: Input9)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 SetVarEQ MyVar RandomVar

 00:00.00 Start ForceRange

ForceRange Forces MyVar to be in range 0-23; (Looping Enabled)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 IfVarLE MyVar 23 Done if <= 23, we’re done

 00:00.00 SubVar MyVar 23

 00:00.00 Goto End Do it again Sam

Done 00:00.00 Start MainShow

 00:00.02 Nop wait 2 frames

End 00:00.00 Nop loop here

MainShow Pick order of video segments from random number
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Reset ForceRange

 00:00.00 IfVarEq MyVar 0 Random1 Decides order

 00:00.00 IfVarEq MyVar 1 Random2

 00:00.00 IfVarEq MyVar 2 Random3

 00:00.00 IfVarEq MyVar 3 Random4

 00:00.00 IfVarEq MyVar 4 Random5

 00:00.00 IfVarEq MyVar 5 Random6

 00:00.00 IfVarEq MyVar 6 Random7

 00:00.00 IfVarEq MyVar 7 Random8

 00:00.00 IfVarEq MyVar 8 Random9

 00:00.00 IfVarEq MyVar 9 Random10

 00:00.00 IfVarEq MyVar 10 Random11

 00:00.00 IfVarEq MyVar 11 Random12

 00:00.00 IfVarEq MyVar 12 Random13

 00:00.00 IfVarEq MyVar 13 Random14

 00:00.00 IfVarEq MyVar 14 Random15

 00:00.00 IfVarEq MyVar 15 Random16

 00:00.00 IfVarEq MyVar 16 Random17

 00:00.00 IfVarEq MyVar 17 Random18

 00:00.00 IfVarEq MyVar 18 Random19

 00:00.00 IfVarEq MyVar 19 Random20

 00:00.00 IfVarEq MyVar 20 Random21

 00:00.00 IfVarEq MyVar 21 Random22

 00:00.00 IfVarEq MyVar 22 Random23

 00:00.00 IfVarEq MyVar 23 Random24

 00:00.00 Display ErrorMsg Never get here

 00:00.00 Goto End

Random1 00:00.02 Start Monkey Order 1, 2, 3, 4

 00:00.04 Start Elephant

 00:00.06 Start Tiger

 00:00.08 Start Democrat

 00:00.10 Goto Summary

Random2 00:00.02 Start Monkey Order 1, 2, 4, 3

 00:00.04 Start Elephant

 00:00.06 Start Democrat

 00:00.08 Start Tiger

 00:00.10 Goto Summary

Random3 00:00.02 Start Monkey Order 1, 3, 2, 4

 00:00.04 Start Tiger

 00:00.06 Start Elephant

6-14 Advanced WinScript Programming

 00:00.08 Start Democrat

 00:00.10 Goto Summary

…Etc…
Random24 00:00.02 Start Democrat Order 4, 3, 2, 1

 00:00.04 Start Tiger

 00:00.06 Start Elephant

 00:00.08 Start Monkey

Summary 00:00.12 Start Summary Always done here

 00:00.14 Search dvm1 1 Video Black-Done!

Monkey
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Stop MainShow Freezes MainShow time

 00:00.00 Search dvm1 1 Monkey Segment

 00:00.00 Play dvm1 2

 00:00.00 Start MainShow UnFreezes MainShow

Elephant
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Stop MainShow Freezes MainShow time

 00:00.00 Search dvm1 2 Elephant Segment

 00:00.00 Play dvm1 3

 00:00.00 Start MainShow UnFreezes MainShow

Tiger
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Stop MainShow Freezes MainShow time

 00:00.00 Search dvm1 3 Tiger Segment

 00:00.00 Play dvm1 4

 00:00.00 Start MainShow UnFreezes MainShow

Democrat
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Stop MainShow Freezes MainShow time

 00:00.00 Search dvm1 4 Democrat Segment

 00:00.00 Play dvm1 5

 00:00.00 Start MainShow UnFreezes MainShow

Summary
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Stop MainShow Freezes MainShow time

 00:00.00 Search dvm1 5 Summary Segment

 00:00.00 Play dvm1 6

 00:00.00 Start MainShow UnFreezes MainShow

As you can see, randomization can add a lot of sequences and events to your

script, but if you design it properly ahead of time, you can make your code

modular, flexible, and elegant.

Real Time Clock
It is often desirable to have events occur at chronological times during the day.

Our Show Controllers do not have internal real time clocks; however, there are

two ways to accomplish this task. The first is to use an external Real Time

Clock module, which transmits the current time to our equipment via serial port

once per second. This device is accurate to a few seconds a year, and doesn’t

Advanced WinScript Programming 6-15

A
d

v
a
n

c
e
d

P
ro

g
ra

m
m

in
g

forget what time it is when the power is turned off in a power outage. The

second solution is to simulate a Real Time Clock in ScriptOS. This solution

does have the advantage of being free, but has the disadvantage of being off by

approximately 1 minute per day and forgetting what time it is if the power goes

out. If a standard UPS is used, and some device (or person) resets the time once

per day, these problems can become negligible.

Both solutions write the hour, minute, second, and frame to four state variables.

I will now show you several examples of using the Real Time Clock (either

external or simulated).

Start Event at 8 p.m.

This sequence is started whenever the HourVar reaches 20.

TimeToTapeFriends (Start trigger: HourVar=20)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Start RecordTV Do Whatever

Start Event at 11:58 p.m.

This sequence is started whenever the MinuteVar state variable reaches 58

minutes, and then checks to see if HourVar is 23. If it is, it starts the event, if

not, it exits.

TwoTilMidnight (Start trigger: MinuteVar=58)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 IfVarEQ HourVar 23 11:58 Now!

 00:00.00 Goto End

11:58 00:00.00 Start DoIt Do Whatever

End 00:00.00 Nop

Start Event Every Hour.

This sequence is started whenever the HourVar state variable changes.

Because sequences always look for edge-triggered occurrences, every time

HourVar is changed, this sequence will run because HourVar will always be

greater or equal to zero.

AtTheHour1 (Start trigger: HourVar0)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Start DoIt Do Whatever

Start Event Three Frames after Every Minute
from Midnight to Six a.m.

This sequence is a little hairier, but is again demonstrative of the power of

ScriptOS.

6-16 Advanced WinScript Programming

AtTheHour2 (Start trigger: FrameVar=3)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 IfVarEQ SecondVar 0 Minute 3 frames past minute

 00:00.00 Goto End

Minute 00:00.00 IfVarGT VarHour 6 End No Good

 00:00.00 Start DoIt Do Whatever

End 00:00.00 Nop

Make Sure Event is Running from 10a.m. to
8:30p.m.

Since sequences are edge triggered, it is possible to miss the time something is

supposed to happen if the power goes out while the trigger time occurs. The

power may come back on, with ScriptOS again knowing what time it is (if you

have the external RTC),but it won’t know that it was supposed to have triggered

something in the past if you write the sequences as we have been.

This sequence is an example of when you have to make sure something is

running during a specific time. If the power goes out, ScriptOS must re-

determine if the event should be occurring. For this example, we will assume

that back ground music for an entire theme park needs to play between 10 a.m.

and 8:30 p.m. We will further assume that when Output3 is on, the BGM is

also.

BGM (AutoStart Enabled; Looping Enabled)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 IfVarLT HourVar 10 NoGood It’s before 10 a.m.

 00:00.00 IfVarGT HourVar 21 NoGood It’s after 9 p.m.

 00:00.00 IfVarEq HourVar 20 Past8 Between 8 and 9 p.m.

 00:00.00 Goto BGM_Ok It’s between 10 a.m. and 8 p.m.

Past8 00:00.00 IfVarGE MinuteVar 30 NoGood It’s past 8:30 p.m.

BGM_Ok 00:00.00 On output3 BGM is on

 00:00.00 Goto End

NoGood 00:00.00 Off output3 BGM is off

End 00:00.00 Nop

Communications Between Alcorn McBride
Equipment

All of our equipment can talk to each other via serial communications using our

own Alcorn 9 Bit Control protocol. This is useful if, for example, one V16+ is

in charge an entire attraction, including the PreShow, and it communicates

serially with two other V16+s that control two mainshows in two independent

theatres. It is also useful for simply adding expansion capabilities, such as

connecting an IO64 to a V16+, where the V16+ is the main Show Controller. In

this scenario, the IO64 adds 32 inputs and outputs to the V16’s existing 16.

Let’s use the IO64 as an I/O expansion box and see what the best way is to

integrate it into your show. For starters, you need to plug a Null modem cable in

between the V16+ and the IO64, using any available serial port (except the

Advanced WinScript Programming 6-17

A
d

v
a
n

c
e
d

P
ro

g
ra

m
m

in
g

Programmer Port) on each box. You also need to select the Alcorn 9 Bit Control

protocol for both of these ports, as well as the same baud rate for both ports.

Since you have to set the baud rate and protocol in the IO64, this automatically

means you have to have two scripts, one for the V16+ and one for the IO64, but

need not program much else in the IO64 if desired.

There are three ways to divide programming between the two boxes. The first is

to program little or no sequences into the IO64, and directly access the I/O of the

IO64 from the V16+. The second is to program as many sequences as needed to

handle the I/O in the IO64, and simple start sequences back and forth between

the two boxes as needed. The third is to utilize a combination of both.

My recommendation is to keep things modular and place as many sequences as

necessary in the IO64. In other words, any programming that interfaces to I/O

in the IO64 should remain in the IO64, and the V16+ can be the main Show

Controller and just talk to the IO64 when necessary. This means the

programming will be more distributed, causing less show memory to be used up

in the V16+. It also makes it more readable because there are fewer sequences

in the V16+ that have anything to do with the IO64. In general, it’s modular.

Here are two example scripts to illustrate this idea. The first is for the V16+, the

second is for the IO64. The IO64 in this case is connected to the entrance and

exit doors and a PLC, which is controlling pyrotechnics.

The doors are simple output signals of the IO64, and the PLC both receives

output signals from the V16+, and sends input signals to the V16+.

As always, don’t forget to configure the IO64 port of the V16+ using AMI

Product Wizard. This allows you to address the IO64’s sequences by their full

names. See Communicating with Alcorn McBride Show Controllers in Chapter

4 for more information.

V16+ Script

StartShow Checks with PLC to see if it’s OK to start show (Start trigger: StartShowButton (Input1))
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Off PLCOkFlag Assume not OK

 00:00.00 Start IO64 OKToStart? Start IO64 Seq

 00:01.00 If Off PLCOkFlag NotOk If PLC did not

turn on flag

 00:01.00 Start MainShow Ok to start show

 00:01.00 Goto End

NotOk 00:01.00 Display ErrorMsg Inform operator

End 00:01.00 Nop

StartShow Started externally by IO64 (from PLC)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 On PLCOkFlag Now it’s ok to

start show

6-18 Advanced WinScript Programming

MainShow
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Start IO64 OpenEntrDoors

 01:00.00 Start IO64 CloseEntrDoors

 06:03.15 Start IO64 StartPyro1

 08:42.23 Start IO64 StartPyro2

 09:00.00 Start IO64 OpenExitDoors

 10:00.00 Start IO64 CloseExitDoors

IO64 Script

OKToStart? Started externally by V16+
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 IfOff PyroOk End Low signal from PLC

 00:00.00 Start V16+ StartShow Go turn on PLCOkFlag

End 00:00.00 Nop

OpenEntrDoors Turns off magnet that holds doors shut; Started externally by V16+
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Off EntrMagnet1 Deactivate Door

Electromagnet

 00:00.00 Off EntrMagnet2 Deactivate Door

Electromagnet

 00:00.00 Off EntrMagnet3 Deactivate Door

Electromagnet

 00:00.00 Off EntrMagnet4 Deactivate Door

Electromagnet

CloseEntrDoors Moves doors to close position; Started externally by V16+
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 On EntrMagnet1 Hold Door Closed

 00:00.00 On EntrMagnet2 Hold Door Closed

 00:00.00 On EntrMagnet3 Hold Door Closed

 00:00.00 On EntrMagnet4 Hold Door Closed

 00:00.00 Pulse EntrMotor1 01.00 Motor Closes Door

 00:00.00 Pulse EntrMotor2 01.00 Motor Closes Door

 00:00.00 Pulse EntrMotor3 01.00 Motor Closes Door

 00:00.00 Pulse EntrMotor4 01.00 Motor Closes Door

StartPyro1 Started externally by V16+
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 IfOff PyroOk End Make darn sure again

 00:00.00 Pulse GoPyro1 01.00 Pulse for 1 second

End 00:00.00 Nop

StartPyro2 Started externally by V16+
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 IfOff PyroOk End Make darn sure again

 00:00.00 Pulse GoPyro2 01.00 Pulse for 1 second

End 00:00.00 Nop

Advanced WinScript Programming 6-19

A
d

v
a
n

c
e
d

P
ro

g
ra

m
m

in
g

OpenExitDoors Turns off magnet that holds doors shut; Started externally by V16+
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Off ExitMagnet1

 00:00.00 Off ExitMagnet2

 00:00.00 Off ExitMagnet3

 00:00.00 Off ExitMagnet4

CloseExitDoors Moves doors to close position; Started externally by V16+
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 On ExitMagnet1

 00:00.00 On ExitMagnet2

 00:00.00 On ExitMagnet3

 00:00.00 On ExitMagnet4

 00:00.00 Pulse ExitMotor1 01.00

 00:00.00 Pulse ExitMotor2 01.00

 00:00.00 Pulse ExitMotor3 01.00

 00:00.00 Pulse ExitMotor4 01.00

ESTOPs and Fire Alarms
Although it is IMPERATIVE that our Show Controllers are not used to control

safety critical equipment, it is very useful to have a Show Controller mute audio,

stop video, open doors, and turn on lights, etc. during an emergency situation.

This response is typically actuated when a PLC or some other device sends an

E-Stop or Fire Alarm signal. Here is an example of such a sequence. Note that

the normal condition of the E-Stop input is high, and the V16 will run this

sequence whenever the input goes low, indicating a true emergency. If the input

went low when there was not an emergency, the V16 indicates a failed signal

that would alert the staff that maintenance needs to fix the problem.

E-Stop (Start trigger: EstopInput goes off)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Start ResetAllSeqs

 00:00.02 Start KillAudio

 00:00.02 Start KillVideo

 00:00.02 Start LightsUp

 00:00.02 Start OpenAllDoors

Frame Accuracy
There are two reasons why execution of sequences may take longer than

expected, or appear to take longer than expected, even though the box is frame

accurate and will execute hundreds of events in one frame.

Serial Events Take Time

Any event that sends a serial message to a device will take at least a frame to

execute, and in many cases, much longer. A Search event on a Alcorn

McBride DVM takes at most a second. A Play event could last for several

minutes. Any sequence that contains an event like this will be frozen in time

until an Acknowledge is received from the player (or other device). The events

6-20 Advanced WinScript Programming

after the external event will not be able to execute until the external event is

finished processing.

The Processor Scans Events like a PLC

ScriptOS is a multi-tasking operating system. This means that it can do several

things at once. Well, it can’t actually do several things at once, but it can do

many, many things in one frame. The processor executes events one sequence

at a time. This process is similar to how a Programmable Logic Controller

works.

ScriptOS performs the following processes in order, once per frame:

1. Process Incoming Serial Messages

2. Process Input Changes to see if there are any sequences that should be

marked to start

3. Process State Variables to see if there are any sequences that should be

marked to start

4. Parse Through List of Running Sequences

 Execute any event that matches the current frame time

5. Process Output Changes

6. Increment the Frame

Let me give you some examples of how this affects you:

If you turn on an output, it won’t actually go on the instant the event is

processed. It actually turns on just before the end of the current frame, along

with any other output changes. This means that if you were to turn on an output

and then turn it back off again on the same frame, the output would never

actually turn on at all. The last commanded state of the output before the end of

the frame is used.

OutputDoesntActivate
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 On output1

 00:00.00 Off output1

 00:00.00 On output1

 00:00.00 Off output1

 00:00.00 On output1

 00:00.00 Off output1

 00:00.00 On output1

 00:00.00 Off output1 Never came on

This example probably is a little more useful. If you have an event that tells

another sequence to start, it does not actually start it, but rather, it marks it for

execution. This means that if you start a sequence that is before the one you call

it from, it will not begin execution until the next frame, whereas if you start a

sequence that is after the one you call it from, it will begin execution on the

same frame.

SequenceA
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 On output2

Advanced WinScript Programming 6-21

A
d

v
a
n

c
e
d

P
ro

g
ra

m
m

in
g

SequenceB
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 On Output1

 00:00.00 Start SequenceA

 00:00.00 Start SequenceC

SequenceC
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 On output3

The result of running SequenceB is that output3 will turn on one the same

frame as output1, and output2 won’t turn on until a frame later. This happens

because SequenceA has already been determined not to be marked for

execution, so the processor then moves on to SequenceB. SequenceB is

marked for execution because that’s the sequence we told to run, so the

processor attempts to process all events that occur on frame zero. Since both

Start events happen on frame zero, they are both processed. The result of them

being processed is that both SequenceA and SequenceC are marked for

execution. The processor then determines that SequenceC is marked for

execution, and executes it. SequenceA is not processed until the processor

starts all over again at the top of the sequence list on the next frame. Easy,

right?

Power up Conditions
If your script has any sequences that are Autostart Enabled and do anything

with DVD players, including spinning them up, you should wait at least 25

seconds before attempting to communicate with them in any way. If the Show

Controller is Autostarting, then that must mean that it was previously deprived

of power, which means that it is likely that the rack of video players was also

deprived of power. Whether or not this condition was intentional is not

important. What is important, is that our Show Controllers power up within a

few frames and DVD players take about 25 seconds to “Wake Up”, so you need

to wait before you try to talk to them.

Restart and Restart Lockout
Restart Enabling a sequence allows the sequence to start, even though it is

already running. When it does so, it starts over at the beginning with the PC set

to event1 and the TC set to 00:00.00.

Restart Lockout allows a sequence to be restarted, but prevents it from doing

so for a specified amount of frames after it was originally started.

Let’s say you are programming a kiosk in a museum on the “Life of Frogs”.

The guest presses a button, and the guest sees and hears information about frogs.

Normally, the guest watches the entire presentation, and when the presentation

is over, the guest leaves. The sequence that played the presentation has ended.

But suppose the guest got bored during the middle of the presentation and

walked away. Now someone else walks up and wants to hear about frogs (little

does he know how bored he will be). This guest does not want to sit through

6-22 Advanced WinScript Programming

the remainder of the previous guests presentation. He wants to be able to press

the button and have the presentation start over from the beginning. Restart
allows this.

This is a nice feature. But let’s say that no-one is watching the presentation (It’s

off), and a thirteen year old boy walks up to the kiosk. He starts the

presentation, gets bored within 0.0000015 of a second and out of curiosity

pushes the button again, to find that the presentation starts over. In fact, if he

pushes the button over and over as fast as he can, he can get the frog

presentation to “rap”. This is oh so much more exciting than the presentation

itself. Now people are staring. Restart Lockout allows you to set a number

of frames that the sequence will not restart in. This allows serious guests to be

able to restart the show when they don’t want to watch the last half of the show

first, and it prevents your and my favorite milk shake globbering, paint chipping

teenager from rapping the frogs.

Preventing Glitches
Glitches occur when an input of a Show Controller receives a voltage close

enough to the maximum to turn it on, or low enough to ground to turn it off,

even though no person or device intended the signal to do so. This can be

caused by noisy signals or a noisy device transmitter (people are automatically

noisy transmitters in the case of buttons). There are two ways to reduce the

effects of glitches.

The Purpose of an Input or Button

If it’s possible to do so, make each input signal serve only one purpose. If some

computer or PLC somewhere is sending pulses to an input to tell the Show

Controller what to do, the Show Controller could become confused if one pulse

is supposed to tell it to do one thing, and two pulses another. This is possible,

but confusing and dangerous. Likewise, a button on an OCC panel which the

operator is supposed to press several times to mean different things can cause a

problem because the person could accidentally press it the wrong number of

times, by not pressing it solidly each time. You can afford to buy a few more

$90 Allen-Bradley buttons.

I realize that I recommend using one button for Daymode/Nightmode. This is

due to the way that DVD Players react to being spun up and spun down. I’m not

concerned with glitches for Daymode/Nightmode because this button is pushed

when there are no guests in the theatre and likely the building.

Check the Input Again

Even if your inputs only serve one purpose, they can still glitch and cause

inappropriate behavior. The best way to confirm that your input went on, off, or

pulsed, is to check it again. If there was a glitch, it is unlikely that the signal is

still glitching when you check later. Here is an example that checks 10 frames

into a 15 frame pulse to make sure the input is still on.

StartShowNow Starts show on ½ second Input 3 pulse (Start trigger:

Advanced WinScript Programming 6-23

A
d

v
a
n

c
e
d

P
ro

g
ra

m
m

in
g

Label Time Event Data1 Data2 Data3 Comment

 00:00.10 IfOff input3 End It must have glitched!

 00:00.11 Start MainShow

End 00:00.00 Nop

Tight Control and Awareness
In some cases it is not important if a show goes down for short periods of time.

This is especially the case of exhibits or kiosks in museums and the like where

the electronics may be a small part of the overall show. For example, let’s say

your museum has a Pepper's Ghost effect that transforms a wooden cigar store

Indian into a video still of a Native American, and the effect fails during the day.

One of the janitors at closing may leave a message to the maintenance people

that “Elijah went down sometime today”, and the effect will get fixed by

morning.

Most of the time, however, inactive show elements are just not acceptable;

someone needs to be told immediately when all or part of the show fails, so that

it can be brought back up as soon as possible.

Equipment in most shows consists of a main Show Controller and other devices

connected it. With WinScript, tight control of most peripheral devices is quite

easy. If several of our Show Controllers are connected together, awareness of

what all Show Controllers are doing is just as important. If you send a

command to another box, you want to be sure it was carried out.

For example, let’s say you have a V16+ sending light cue commands to a DMX

Machine. The best way to make sure the cue was carried out (the sequence

executed) is to send a message back to the V16+ to confirm it. There are several

ways to do this, but this one seems to be the easiest.

V16+ Script

SendingLightCue
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Off ConfirmFlag

 00:00.00 Start Dmx Cue3 Run Cue 3

 00:00.05 IfOn ConfirmFlag Confirmed

 00:00.05 Start Dmx Cue3 Try Again!

 00:00.10 IfOn ConfirmFlag Confirmed

Failed! 00:00.10 Start Cue3Failed No good

 00:00.00 Goto End

Confirmed 00:00.00 Start Cue3Success Good

End 00:00.00

ConfirmIt
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 On ConfirmFlag

DMX Script

Cue3
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Start v16+ ConfirmIt Turn on ConfirmedFlag

6-24 Advanced WinScript Programming

 00:00.00 DMXRamp 15 50% 02.00 Do Cue 3 Stuff

 00:00.00 DMXRamp 241 FF 01.15

 00:00.00 DMXRamp 242 FF 01.15

 00:00.00 DMXRamp 243 FF 01.15

 00:00.00 DMXRamp 69 75%

In this manner, you can check individual commands sent back and forth between

boxes. Sometimes, where you want to know immediately if a Show Controller

has failed, and not wait until a message is sent between them, you can

implement a “Watch Dog Timer”, which will notify a Show Controller if a

subsystem Show Controller has failed. You can even put a watchdog timer in

the subsystem to watch over the main Show Controller. The procedure is the

same.

Here is such an example. If the subsystem IO64 fails entirely, or the serial port

fails, or the cable fails or falls off, the V16 will know about it, and alert some

theme park wide central computer. The V16 could even flash the lights in the

employee bathroom, or log the time of the failure, if a Real Time Clock is

installed.

Advanced WinScript Programming 6-25

A
d

v
a
n

c
e
d

P
ro

g
ra

m
m

in
g

V16+ Script

WatchDogTimer Increments watchdog timer once a frame (Autostart Enabled, Looping Enabled)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 AddVar WatchDogVar 1

WatchDogFailed WatchDogVar has reached 60 frames (Start trigger: WatchDogVar GE 60)
Label Time Event Data1 Data2 Data3 Comment

 00:00.00 Start AlertDACS Announce Failure

IO64 Script

SendImOK Sets V16+’s WatchDogVar to 0 once per second (Autostart Enabled, Looping Enabled)
Label Time Event Data1 Data2 Data3 Comment

 00:01.00 SetVarEq v16+ 0 WatchDogVar WatchDogVar = 0

6-26 Advanced WinScript Programming

Application Notes 7-1

Application Notes

Alcorn McBride Show Controllers can be used in very simple and very

complex applications. Here are a few sample applications to get you

started.

The Application Notes available in this section are:

 Large Theatre Control

 Controlling an Alcorn McBride Digital Video Machine

 Controlling Automatic Doors

7-2 Application Notes

Large Theatre Control
Many large shows are designed in a theatre format. This design provides

high guest throughput by utilizing a PreShow, where guests gather to watch

a short film or audio-animatronic presentation. As these guests are

watching the PreShow, another group of guests is already in the Theatre

watching the main show. The attraction is timed so that when the Preshow

is over and the operator has given any special instructions to the guests, the

automatic entrance doors open. The previous group will have left the

theatre only moments earlier. As the entrance doors close and the main

show starts again, another group of guests is gathering to watch the

Preshow.

This application note discusses the design of a large theatre just like the one

described above. This design utilizes an Alcorn McBride V16+ and several

generic show elements to create a simple, but powerful theatre experience.

The Theatre In Question

Every show design starts with an attraction description. This is where the

desired guest experience, operator interface and performance requirements

come together to create a show equipment list. For our imaginary theatre

we have selected a multi-channel audio film projection theatre and a multi-

screen video preshow area. As with most shows of this type the preshow

and theatre run in relative synchronization, allowing guests to accumulate in

the preshow during the film presentation in the main theatre.

As we shall see, a single V16+ will provide total control of both theatres,

including operator consoles, projector, doors, audio equipment, and the

DVD Players. For the sake of completeness our application also

incorporates some specialty hardware located in the main theatre. In this

instance the V16+ handshakes with a ride control system which sends

motion data to moving seats located in the theatre. In a more generic

installation this could instead control special effects or other show-

synchronized activities within the main theatre.

You can follow along with this application note in WinScript by opening

MYSHOW.AMW (located in the WinScript\Scripts\Examples\ directory).

Note This application note assumes that the reader possesses rudimentary

scripting skills. New users should take the WinScript Tutorial in Chapter 3

before continuing.

Architecture

 The V16+ is the ultimate collector of all operator and status inputs and the

distribution point for commands throughout the attraction.

Application Notes 7-3

Inputs, Outputs, Sync and Serial Ports

To begin configuring our V16+ we need to make a list of the inputs and

outputs to which it will be connected. This information will then be entered

into the configuration menus of WinScript.

Digital inputs consist of contact closures or voltage sources throughout the

building which are used to sense the status of remote equipment and

operator pushbuttons. In addition, switches on the V16+ front panel

provide user-defined initialization, test, and special functions.

Digital outputs provide dry contact closures for switching control voltages

throughout the building. These signals can be used to open doors,

illuminate lights, and handshake with other equipment.

Serial connections provide the RS-232 commands and status that permit the

V16+ to control up to sixteen DVD Players.

A Composite Sync connection provides synchronization from any or all of

the DVD Players. This guarantees that the V16+ remains exactly in frame

sync with all DVD Players.

Front Panel Buttons

Our inputs include the first eight front panel buttons of the V16+. We will

use the first switch as a show startup button. This button will bring all of

the external equipment up to its nominal starting condition. The show

startup button will activate the same sequence which will execute

automatically whenever the V16+ is powered up.

An evening shutdown button could perform much the opposite of the show

Startup sequence. It would provide a means to stop the video players, take

projectors off line, and turn off operator prompting.

The other internal buttons have been left unassigned at this point but could

be used for special test features, a way to select a different show cycle or

combination, or almost any other function, limited only by the designer's

imagination.

Theatre OCC

The Theatre OCC must provide a way to start the show and to request that

the show pause at rollover. (Rollover is the point when the projector has

reached the end of the theatre show material, the theatre audience has exited

and the preshow audience is in the process of entering the theatre.) Our

show will be designed to automatically cycle all day long, thereby

encouraging the operators to maintain maximum throughput. However, for

large audiences the operators may require more load time than that provided

in the automatic recycling. The Theatre OCC Pause button allows the

operator to request a pause during this load cycle prior to the next theatre

presentation. We have also provided a Theatre OCC Stop button. This

button's function is to stop a show during an emergency situation. It will

close the projector douser, mute the theatre audio and bring up the

houselights. The Theatre OCC will also have open/close/auto switches for

7-4 Application Notes

the theatre entrance and exit doors. Inputs from these switches do not need

to go to the V16+ in our simple theatre architecture. Although they

certainly could be processed by the V16+, it is sufficient in our application

that the V16+'s door outputs are wired through these switches to provide

automated door opening when these switches are in the auto position.

The Theatre OCC could also be outfitted with an audio mute switch. This

switch allows the operator to request the V16+ to mute the theatre audio

entirely. This switch is often used by maintenance during the test show in

the morning so that they do not have to listen to the entire theatre audio

program.

The designer could even include a PA talk button that allows the operator to

mute the audio system by a predetermined amount and to mix audio from

the Theatre OCC microphone into the amplifiers so that the operator can

provide theatre loading and unloading direction to guests. In our simple

example, this button is routed directly to the audio equipment, although the

V16+ could easily handle it, and perform logical operations upon it.

Show status at both the Theatre and Preshow OCCs is indicated by the cue

light. This light will be illuminated when the system is Ready to run the

next show. This light can also be blinked to serve as a cue for the Preshow

load spiel, end of show warning, etc.

Preshow OCC

The Preshow OCC is simpler than the Theatre OCC and does not require

any switches with inputs going to the V16+. It does have a theatre entrance

door switch which can manually open or close those doors.

Ride Control Computer

In our imaginary theatre we will be interfacing the V16+ to two other pieces

of equipment located in the projection room. One of these is the Ride

Control Computer. Since the “RCC” will control the moving seats in our

theatre, we will use a standard Allen-Bradley PLC to provide the highest

possible margin of safety for our guests. The RCC must tell the V16+ when

it is ready to reproduce the motion program, and accept a command to start

that program. Several handshaking scenarios are possible. In an even more

safety critical application we could let the theatre operator request motion

playback from the RCC using a keyswitch connected directly to the RCC.

When the RCC is ready, it would advise the V16+ with a ready line. When

the V16+ starts the projector and video players, it would also cue the RCC.

In our application we are going to assume that the RCC is just providing

special effects, and allow the V16+ to start the show. It will still check that

the RCC is ready, but this will allow it to cycle continuously all day unless

the Theatre OCC Pause button is pushed. Note that even with this

architecture the RCC could still be enabled by a momentary keyswitch,

which would prevent the V16+ from starting the show, by removing the

RCC ready line. Regardless of the approach taken our block diagram

remains the same, and only minor changes are involved in the V16+ script.

Application Notes 7-5

Entrance and Exit Doors

The V16+ uses two of its outputs to control the theatre doors. Another

V16+ output is used to flash the warning lights in the preshow area above

the theatre entrance doors. This alerts guests who might be standing too

near the doors, and also provides a means for beckoning the crowd through

the doors in order to increase theatre load efficiency.

Projector

The final piece of projection room equipment connected to the V16+ is the

projector. The projector has a ready line that tells the V16+ it has recycled

to the end of its film loop and is ready for the next theatre presentation. The

V16+ has two control lines which go to the projector. One starts the

projector if it is ready and has recycled from the previous show. The other

opens and closes the projector douser. This provides a means for the V16+

to stop the projection of the film in the theatre without having to stop the

automated mechanism of the projector.

Audio System

Our Theatre Audio System consists of five tracks of digital audio that has

been sampled to be in synchronization with the video material when cued

on the same frame as the video players. This audio will be sourced from an

Alcorn McBride Digital Binloop system that accepts simple serial

commands from the V16+.

Through a parallel connection to the audio mixing system, the V16+ can

fully mute the audio to eliminate theatre sound entirely. Although the mute

button could be connected directly to the audio system, it is wise to route it

through the V16+ as we have described. This allows the V16+ to

automatically unmute the audio at the end of each show. One common

operational error occurs when the maintenance staff that tests the theatre

each morning mutes the audio. During the first show of the day, the

operator may not notice that the audio is muted until the first portion of the

program material has been missed. By programming the V16+ to unmute

the audio at the end of each show cycle, the audio will be automatically

unmuted before the first show of the day begins.

DVD Players

In our design each DVD Player used in the show requires one serial

connection to the V16+.

The preshow of our theatre uses eight small monitors and one large screen

video projector, arranged in an aesthetically pleasing pattern on the preshow

walls. Each of these monitors is driven by its own video program. For the

sake of simplicity we have used nine separate, synchronized DVD Players

for the preshow; it might be possible to use the three main theatre disc

players for three of the preshow monitors, however this would constrain the

timing relationship between the preshow and the main theatre. Since we

7-6 Application Notes

want flexibility during installation to alter the timing between the two

theatres we will use nine separate DVD Players for the preshow.

The preshow audio is provided by two digital tracks sourced from the

Digital Binloop system.

Video Sync

It is important that the theatre DVD Players run in absolute frame

synchronization to guarantee that the audio program is started on the same

frame as the video program. This frame synchronization is achieved by

using BNC cables to daisy-chain the sync signal between the video players,

ending at the V16+ frame sync input. The sync works best when the V16+

is at the end of the line, with the 75 ohm terminator enabled using the

internal jumper.

When these frame sync signals are connected to multiple players the V16+

can guarantee that a play command issued to multiple players will be

processed by all players simultaneously, assuring that each player and the

Digital Binloop system will reproduce their source material in exact

synchronization.

Even though the Preshow and Theatre players source different video

programs, by keeping them in perfect synchronization we assure that the

Preshow and Theatre programs both begin at the same time. This makes for

a smooth transition between theatres.

In order to avoid audio synchronization problems, we could synchronize the

V16+, DVD Players and Digital Binloop Audio System to SMPTE

timecode by using an Alcorn McBride SMPTE Machine. Each of the

sequences in the V16+ could then be triggered at a preset SMPTE time

code, but for this installation there is no advantage in using this SMPTE

option since the V16+ and the players are always in agreement as to the

current frame time. The SMPTE option would be handy, though, if our

audio source were coming from a Tape Deck or other source that could

induce time variances that would affect show performance.

Let's not forget to distribute sync to the PLC and projector, also. This will

guarantee that the motion playback stays in sync with the projector and

audio tracks.

Houselights

A V16+ output commands the dimmer cabinet to lower the theatre

houselights for film projection. In an emergency situation, as well as at the

end of every show, the houselights are brought back up to their original

levels.

Printer

A serial printer can easily be connected to the show system to log the show

cycle and any errors. In our example, we will use a small thermal printer

(normally used in cash registers) to log system power-up.

Application Notes 7-7

More Outputs?

To keep our sequence examples simple, we have used only eight outputs of

the sixteen available on the V16+. Many other discrete output possibilities

can be added. For example, you could add independent show run, pause,

and stop lights, cue lights for both the Theatre and Preshow OCCs, and

control of special effects within the theatre. Also, the V16+ could control

the OCC microphone mix to the audio equipment. To utilize more than

sixteen inputs or outputs, additional IO64 Discrete I/O Expanders must be

connected to the V16+.

Configuring the V16+

Now that we have designed the architecture of our show we need to

describe it to the V16+. This is done with screens that, to a large extent,

mimic the decisions that we have already made.

We begin from the main menu of the WinScript programming software by

selecting the File | New option and choosing V16+ from the product list.

Next, let’s give our show a name…how about "MYSHOW"?

Let’s continue by selecting the Configuration | Unit… menu item. This

Dialog Box allows us to describe the environment that the script will be

executing in. Information requested here includes the Unit Type (V16+),

Unit Address, and frame rate. The selection of frame rate affects the frame

numbers used while programming our sequences, so this selection should be

made before we do any sequence programming. The V16+ clock can be

sourced from the processor's internal oscillator or from an external clock at

any rate up to 3000Hz. We will be using external frame sync from one of

the DVD Players, so set the Clock Source to External.

7-8 Application Notes

After closing this menu, we choose Resources | Inputs… . This is a

simple menu which lists all of the inputs to the V16+ and allows us to give

them English names which will be used throughout our sequences. Using

the input hardware descriptions we arrived at previously, we assign our

names.

Next we close this screen and move on to Resources | Outputs… . In a

similar fashion we give the outputs names that we wish to use throughout

our sequences.

Application Notes 7-9

Next we choose Resources | Flags…. Flags 1-12 are used as “Ready

Flags” to be turned “ON” when the corresponding DVD Players is “Ready”

to start the show. The exact information to enter into the fields is given in

Figure 11.

7-10 Application Notes

Now we move on to Resources | Ports… . This is where we configure the

V16+ for the number and type of DVD Player to which it is connected. For

each player in use we select a baud rate, data format (parity, length in bits, and

number of stop bits) and a manufacturer's protocol. This protocol can be

specific to Sony or Pioneer disc players, or can be a custom protocol designed

by the user. The Programmer Port is always port 0, and its type is set to Alcorn

9 Bit Control. In our show we will connect the V16+ to the 12 Pioneer disc

players described previously, plus the Digital Binloop Audio System, a serial

printer for data logging, and a Ride Control PLC. This uses 15 of the 16 serial

ports of the V16+.

Application Notes 7-11

Next, we choose the Resources | LCD Strings… menu and create the

display messages that will be seen on the V16+ LCD Display before, during,

and after each show.

Finally, we go to the Resources | Data Strings… menu and create some

serial strings for use in our sequences. This allows us to construct

specialized serial messages that are not constructed by the script compiler.

Do not enter search and play commands here. They are created

automatically. This is the place, however, to define custom messages to be

sent to the printer and RCC.

In a more complex show we could design a custom serial protocol for the

RCC into a Protocol File, but since we will only be sending it one “start”

message, we will keep the message in the Data Strings configuration for

simplicity. In a real show situation, the messaging might be more complex,

so please refer to your specific equipment manuals for information on serial

protocols.

7-12 Application Notes

Now our V16+ is fully configured for its operating environment. The next

step is to create and add events to the sequences of MYSHOW.

Configuring Sequences

We now will edit and configure our sequences by working with the
Sequences of MYSHOW window. The V16+ supports up to 256

sequences. Each sequence may be up to 32,767 events long (although our

V16+ can only hold around 8,192 total events since it supports a maximum

of 64KB of show memory), and all sequences execute independently and

simultaneously. Each sequence is started, paused, stopped and reset by its

own unique set of conditions and can interact with other sequences as well.

The logical place to begin our sequence programming is with our auto-

executed sequence, the one that is also initiated by pressing the first button

on the V16+ front panel. This is our show startup function and will bring

all of the equipment in the attraction to a known starting state whenever the

V16+ is first powered up or this first button is pushed.

Each sequence that we write must have its own setup properly filled in, in

order to behave in the way that we expect. Double-click on the name of the

Default sequence in the list and change the sequence name to “Startup”.

For each sequence we can assign dedicated start, stop, pause and reset

functions. These are normally attached to the front panel buttons on the

V16+. In the case of our Startup sequence we have no requirement for a

stop, pause or reset button. We do, however, want to attach the V16+'s first

button to start this sequence by setting the Start Trigger of Startup to

FrontPanelStart. We also want this sequence to be Autostart Enabled so

that it will start immediately at powerup.

Similarly, the sequences Startshow and EStop should be assigned start

triggers of OCCStart and OCCStop, respectively. The rest of our

sequences will be started and reset by other sequences, so they should not

be assigned any triggers.

Programming Sequences

Up to this point we have configured the V16+ environment and given

English names to its input, output and serial ports. We have also defined

some general purpose strings and given them English names. All of this

Application Notes 7-13

configuration information now becomes a tool which we can use to create

the sequences that will make our theatre run.

The sequence entry we are about to perform will result in a completed V16+

script consisting of a few sequences. Obviously with nine unused inputs,

eight unused outputs and 212 unused sequences there is plenty more we can

make this V16+ do. But these sequences will give you an idea of the

V16+'s capabilities and form a rudimentary but complete theatre control

system.

One of the most powerful aspects of the V16+ is the inter-relationship that

sequences can have amongst themselves. Several of our example sequences

will illustrate the flexibility this gives us.

The first sequence for which we will enter events is our Startup sequence.

The function of Startup is to initialize outputs to known states. As you

recall, this sequence is executed automatically when the V16+ and other

equipment is first powered up. It is also executed whenever the first push

button on the V16+ front panel is pressed.

The very first activity in our startup sequence must be to reset other

important sequences. Since many of our sequences operate the same

outputs, allowing some other sequences to run during Startup could cause

interesting and unpredictable interactions. When first powering up the

V16+, of course, the other sequences will not be running, but they may be if

the start button is pushed later during the day.

Startup continues by initializing all of the V16+ outputs to a known state.

When the V16+ is first powered up all of its outputs are initialized to off;

however, since the Startup sequence can be executed at any time, the state

of the outputs is unknown. We therefore initialize all of them. Do this

using the Off and On events in the Event column and the English names of

the outputs in the Data1 column. Using these commands, we turn off the

operator console cue light, close the exit doors, turn off the projector start

and douser lines and turn off the audio mute line.

We also want to set the entrance doors to their normal rollover state, which

in our case is going to be open. Before we do this we should blink the

warning lights for 5 seconds to alert anyone near the doors that they are

going to move. Do this using the Blink event, putting the warning light

name in the Data1 column and a one second blink rate into the Data2

column.

7-14 Application Notes

Now that the rest of the theatre is ready, we start the Recycle sequence

which will get all 12 DVD Players ready. Since we do not know how long

it will be until the first performance, it is necessary to search the DVD

Players as fast as possible. To do this, we start 12 independent search

sequences (SearchTheatre1, SearchTheatre2, SearchTheatre3,

SearchPreshow1, etc.) that turn the corresponding flag “ON” when the

player has been searched. Also, to insure that all outputs will be “OFF”

when the Search sequences begin, we simply turn them all “OFF” before we

start Search sequences 1-12.

If all twelve SelectClip events were put in the same sequence, the time

that it takes for each player to spin-up will accumulate. Even though they

would be scripted to occur on the same frame, the final SelectClip event

could be over 4 minutes late!

Application Notes 7-15

Recycle is used at the end of each show to bring the DVD Players to the

beginning of the file in preparation for show playback. Make sure that there

are no triggers assigned to this sequence. It cannot be activated by any

switch closure. It is only activated by other sequences. This sequence does

not have the ability to be restarted and will not Autostart either. Essentially

the entire configuration has been set to an inactive state.

Just before Recycle ends we start another sequence: DVD PlayerSearched?.

DVD PlayerSearched? constantly checks the status of each DVD Player, so

it should be Loop Enabled. If even one of the players isn’t powered or is not

responding, the show cannot begin, but eventually the SelectClip

commands inside the Search sequences will time-out and the show will

commence, even though a DVD Player may not be spun-up. When all

DVD Players are searched. the ShowReadyFlag is set.

7-16 Application Notes

Our next sequence is StartShow. StartShow is actuated by the start button

on the theatre operator's console. Our theatre presentation is designed so

that it can automatically loop all day long after the first show is manually

started. To run the first show of the day the operator presses the OCC start

button and StartShow begins execution. Configure StartShow to have the

OCCStart input as its start trigger and don’t forget to check the Loop

Enable checkbox to assure that we continually check for the projector

ready-line.

StartShow uses the LCD display command to inform us that it is waiting for

the projector ready line. Next it checks to see if the projector ready line is

active. If it is not, it jumps over the next line to the Nop at the end of the

sequence, labeled loop. As soon as the sequence reaches the end, it begins

again at the beginning. When the projector is ready, StartShow confirms

that the DVD Players have been searched to the correct frame, starts the

main show sequence, Showtime, and resets itself so that it won’t interfere

with other sequences.

Application Notes 7-17

Showtime is the main timekeeping sequence for running the theatre show.

Showtime's 0 starting frame corresponds to the first frame played back from

all of the DVD Players. We define it this way to make it easier to program

the sequence of theatre events: all of the time offsets throughout the

sequence are relative to the show frame being played back. (If events need

to occur after StartShow and before the DVD Players play, these events

should be placed in another sequence started by StartShow. At its

completion that new sequence should start Showtime.)

Showtime immediately issues a play command to all of the DVD Players.

Again we do this by starting multiple parallel sequences to assure that the

commands are all processed in parallel and all the players start on the same

frame. By doing this we have guaranteed that the V16+ will send the serial

commands to all players simultaneously.

Simultaneously with a play command to all of the DVD Players, Showtime

sends a start message to the Digital Binloop system. Next, we send a start

pulse message to the projector. Then, we send a serial message to the RCC

telling it to start its motion control playback.

7-18 Application Notes

Now that we have completed the time critical activities that occur at frame 0

we can perform some lower priority functions. We display "Show

Running" on the LCD and command the house lights, entrance doors, audio

mute, and cue light off. Five seconds after the projector started we open the

douser.

The show is now running. Our imaginary show ends at 2 minutes, 45

seconds. Twenty seconds prior to that we pulse the operator console cue

light for 3 seconds to cue the operators to prepare for their spiels. Now the

show is over. We close the douser, bring up the house lights and open the

exit doors. We also start the Recycle, previously described, to bring the

DVD Players back to their starting positions. Notice that Recycle is

performing this activity while Showtime continues to run.

Now we blink the warning lights for the entrance doors. The preshow

operator provides a fifteen second speil and then we open the entrance doors

and turn off the warning lights. After an additional 25 seconds we close the

exit doors.

Next we check the state of the operator console pause switch. (To simplify

things, we are using a maintained switch. A momentary would work just as

well, but we would need an extra sequence and a flag to hold its state.). If

the switch is in the pause position, then we should not Recycle the show

automatically. We instead jump to the End label. If the switch is not

paused, then we can re-initiate the entire show cycle by starting StartShow.

If we are in pause, we display a status message on the LCD display to that

effect.

The final sequence, EStop, is responsible for handling the operator console

stop button. When pressed it closes the douser, brings up the houselights

and stops the other sequences.

Summary

As you can see, the V16+ provides a wealth of Show Control power and

versatility to even the most complex of shows, providing exact timing and

control over all show systems.

Application Notes 7-19

Digital Video Machine Control
The Alcorn McBride Digital Video Machine is the most robust video

playback unit available today; providing near-instantaneous access to up to

9,999 individual video clips.

In this example, we have established a new hotel, the Alcorn Inn, and are

seeking ways to advertise our new hotel to current or would-be tourists. Our

marketing department comes up with an idea for an interactive kiosk that

provides prospective customers with a rich multimedia presentation touting

the great benefits of staying at the Alcorn Inn. Energized by the marketing

pep-talk, we quickly decide to combine an Alcorn McBride V2+ and DVM

to provide both control and audio/video sourcing for our kiosk.

You can follow along with this application note in WinScript by opening

DVM.AMW (located in the WinScript\Scripts\Examples\ directory).

Note This application note assumes that the reader possesses rudimentary

scripting skills. New users should take the WinScript Tutorial in Chapter 3

before continuing.

How Our Kiosk Works

At power-up, our kiosk will run an "Attract Loop". This video sequence will

be a succession of still-images taken at the Alcorn Inn and will loop at the

end (the first and last still images are the same, providing a seamless

transition back to the beginning).

When a guest steps up to the kiosk, the motion sensor is tripped and a short

"welcome" video message is played. The guest is then given the choice to

view one of four clips: Great Rooms, Great Food, Great Rates, and a

Special Offer. Great Rooms, Great Food, and Great Rates are located on the

Internal drive of the DVM, and Special Offer is located on the Removable

drive (this allows us to change our special offer at any time without having

to copy the clip to the Internal drive). If the guest does not select a clip

within ten seconds, it is assumed that they have walked away and the kiosk

returns to the Attract Loop.

If the guest chooses a clip by pressing one of the buttons, the clip is played

and then the Welcome clip is played again. Once the guest views all of the

desired clips and walks away (hopefully to the nearest phone to reserve a

week at the Alcorn Inn), the kiosk will return to the Attract Loop.

Here is a listing of all the clips and playlists on our DVM:

Removable Drive Internal Drive

Clip Name File Name Clip Name File Name

Special Offer VID00001.MPG Attract Loop Playlist PLY00000.LST

 Great Rooms Clip VID00001.MPG

 Great Food Clip VID00002.MPG

7-20 Application Notes

 Great Rates Clip VID00003.MPG

 Welcome Clip VID00004.MPG

 Attract Loop Clip VID00005.MPG

Creating The Attract Loop Playlist

We want our kiosk to start the Attract Loop as soon as possible after

powerup, so we will use the Attract Loop Playlist located on the Internal

drive to play and loop the Attract Loop clip as soon as the DVM has

powered up. The Playlist is created as follows:

I ;Our Attract Loop is interruptible

L5 ;Loop Attract Loop Clip (VID00005.MPG)

Programming the V2+

First, we configure Port 1 of the V2+ for the Alcorn McBride Digital Video

Machine:

Next, we assign our contact closure inputs: Input 9 of the V2+ is connected

to the motion sensor, Inputs 10-13 are connected to the four external

pushbuttons, and Input 14 is connected to the Playing output of the DVM:

Application Notes 7-21

To prevent the guest from being able to interrupt a clip while it is playing,

we will use two flags to keep track of where we are in the show. This will

allow our sequences to decide whether or not they should accept input from

the guest. PlayingClipFlag will be turned on when one of our four

informational clips is playing, while PlayingWelcomeFlag will be turned

on when the “Welcome” clip is playing.

Next, we want to create the sequences that provide the interactivity of our

kiosk and tightly control the flow of the show. The sequences we will use

are listed in the figure below:

7-22 Application Notes

Our first sequence will be the Attract Loop sequence. Although this

sequence won’t be used at powerup, it will be called on to play the Attract

Loop after a guest has stepped away from the kiosk. AttractLoop selects the

Internal drive of the DVM with the SelectDrive event and then commands

the DVM to continuously play and loop the Attract Loop clip.

Our next sequence is a housekeeping sequence that has become

commonplace in many scripts. This sequence, ResetFlags,

indescriminately resets all of the flags that we are using in this script. We

will use this sequence to return the flags to a known state at certain points in

the show.

Application Notes 7-23

MotionSensor triggers the sequence Welcome. This sequence resets the

flags using ResetFlags to ensure that the show is in a known state, turns

on PlayingWelcomeFlag to alert the other sequences that the Welcome

clip is currently playing, and then plays the Welcome clip.

When PlayInput (the Playing output of the DVM) turns off, we know that

one of the clips has just finished playing - but which one? Using the two

flags we created earlier (PlayingWelcomeFlag and PlayingClipFlag),

we can create a sequence that is triggered when PlayInput turns off. We

can then decide whether it should wait for the guest to push a button (after

Welcome has finished), or immediately play the Welcome clip (after an

informational clip has played).

Our sequence, ClipFinished, first checks the state of PlayingClipFlag.

If it is on, the sequence knows that the DVM has just finished playing one

of the four informational clips. It turns off PlayingClipFlag and starts

Welcome (which plays the Welcome clip again). If PlayingClipFlag is

off, then the sequence checks the state of PlayingWelcomeFlag. If

PlayingWelcomeFlag is on, the sequence knows that the DVM has just

finished playing the Welcome clip and that it should wait for the guest to

push a button. It turns off the flag and starts our "waiting" sequence,

WaitingForSelection. We are only interested in the status of the four

informational clips and the Welcome clip during the show, so if both flags

are off, we do nothing.

7-24 Application Notes

WaitingForSelection waits ten seconds after the Welcome clip finishes

and then restarts the Attract Loop, assuming that the guest has walked

away. If the guest presses a button during the ten-second interval, the

sequence that corresponds with that button will reset

WaitingForSelection so that it does not restart the Attract Loop.

We provide four separate sequences (triggered individually by a

corresponding pushbutton) to play our informational clips: GreatRooms,

GreatRates, GreatFood, and SpecialOffer. These sequences check the

status of both flags. If either flag is on, the sequence knows that another clip

is playing and it should not interrupt it, so it does nothing. This forces the

guest to watch a clip in its entirety before choosing another.

Application Notes 7-25

Each sequence resets WaitingForSelection to prevent it from starting the

Attract Loop ten seconds later. After the informational clip has finished

playing, ClipFinished starts the Welcome clip again. When the guest has

viewed all the desired clips and walks away, the kiosk automatically times

out, starts the Attract Loop and waits for the next guest.

Summary

As you can see, controlling video playback from a Digital Video Machine is

extremely straightforward. Near-instantaneous access times eliminate the

need for independent Spinup, Spindown, or Search sequences. Also, the

Playing output allows us to make our script clip-independent, so we can

change the lengths or content of our clips at any time without reworking the

script. An V2+ / DVM combination is ideal for many applications.

7-26 Application Notes

Application Notes 7-27

Using Cue List in a Live Show

Many live shows use SMPTE timecode to keep the audio, video, lighting and show control in

sync. In some of these shows, the programmer has the luxury of a timecode list. Typically this

list is dictated by the audio program and indicates the timecode locations at which certain events

must happen. When this luxury exists, programming your show with timecode is as simple as

entering in timecode triggers in WinScript in the appropriate sequences, as discussed earlier.

When you do not have the benefit of a timecode listing, you can use Cue List to attach timecode

triggers to your sequences in real time. By running the show with timecode and cueing the show

in real time, you can place your sequences at the exact time that you desire while watching the

entire show with all show elements.

To illustrate the use of Cue List, here is a sample application: a live show on a cruise ship. This

show involves an audio playback source and a lighting console that both track timecode.

Additionally, there are video sources and a router that must function within the show. For this

application, we will use a SMPTE Machine and a V16+.

In live shows, such as this one, the number of times the show is run with all elements is very

small. This is because it is very difficult to run the show multiple times with the cast and the cast

is often critical in adjusting the timing of show control and lighting elements. Therefore, it is

important to use each valuable run of the show as much as possible. In this case, we would like to

trigger as many sequences as possible and fine-tune the show with each successive run.

In this particular instance, we pre-program the sequences to decide which video clip should play at

different phases in the show and what video source should be routed at various times. Once all of

the programming has been done, we can run Cue List. The first step is to arrange the Sequences in

the rough order that they should occur in the show under the “Cues On” window. While it is

possible to re-arrange these Cues while we are running the show by dragging them up and down in

the list, it is easier to do this now while you are not distracted by the show running. Once you are

ready to go, you can set the Start Time, Reset to the Start Time, and Start the Timer. If you are

running a show in which the SMPTE Machine is not the SMPTE generator, you should push the

Start Timer button when the timecode source starts. As the director calls for the sequences to be

7-28 Application Notes

run, it is easy to move the sequences from the “Cues On” window to the “SMPTE Triggers”

window.

After all of the Cues have been placed, the Cue Times can be adjusted by moving the questionable

sequences back to the “Cues On” window and re-running the show. Another option is to modify

the trigger times by right-clicking on the sequence, selecting the SMPTE Trigger, and modifying it

accordingly.

If you would like to program your show off-line, while relaxing on the pool deck, it is easy to run

Cue List with a tape of the audio source (or a video tape of the show). Simply run the source and

start the timer. At the appropriate locations, move the sequences from the “Cues On” window to

the “SMPTE Triggers” window. After this has been completed, you can return to the theatre,

download your script and fine-tune the show on the next run-through. This also works if you are

programming the show in your cabin if it is raining on the pool deck.

With Cue List, it is easy to adjust show control timing while all the other show components are

adjusted and keep the director happy.

Application Notes 7-29

Controlling Automatic Doors
There are many applications where an Alcorn McBride Show Controller

can perform non-safety-related duties normally delegated to a PLC. One

application that immediately comes to mind is automatic theatre doors.

These doors open when the main show is loading/unloading (as in the Large

Theatre Control example). The Show Controller should automatically

open/close the doors as dictated in the script except when overridden by an

operator control switch.

This simple example utilizes a three-position maintained switch to provide a

Show Controller with two inputs: Open and Close. The center position is

Auto, and can be deduced by the absence of both Open and Close inputs.

When the switch is in the Open position, the Show Controller should keep

the doors open, regardless of what the show is doing at the moment. The

same is true with the Close position; the doors should remain closed

regardless of the status of the show. In the Auto position, the Show

Controller can dynamically open and close the doors at the appropriate

time. A flag will provide automated control of the doors from within any of

the other sequences: the sequence will turn the flag on to open the doors

and off to close the doors. If a set of doors is in Auto mode, our looping

sequence should open/close them based on the state of the flag. If the doors

are in Open or Close mode, the other sequences may still turn on and off

the flag, but the doors will not be affected.

We will perform this function by using one Loop Enabled sequence that

continuously checks the inputs and opens/closes the doors if necessary.

The figure below shows the events of our sequence, OpenCloseDoors.

This sequence loops every 10 frames and update the state of the doors based

upon the switch inputs (DoorOpenInput and DoorCloseInput) and the script

open/close flag (DoorFlag). The sequence first checks if either input is on.

If the operator has moved the switch to the Open position, the doors should

be opened. Similarly, if the operator has moved the switch to the Close

position, the doors are automatically closed without regard to DoorFlag.

Finally, if the doors are in the Auto position, the status of DoorFlag is

checked. If DoorFlag is "on" the doors are opened, and vice versa.

7-30 Application Notes

Summary

Using flags as "permission" outputs allows a separate sequence to monitor

the status of operator controls, check the flag, and perform the desired

action ("grant permission"), if possible. As you can see, we have saved

considerable Ladder Logic programming (and perhaps an entire PLC) by

utilizing one sequence, one flag, and two inputs to control our automatic

doors.

V16+ Hardware Reference 8-1

V
1
6
+

V16+ Hardware Reference

The V16+ is the latest version of our original, and still most powerful, Show

Controller. It is ideally suited for the control of video walls, large theaters, and

multiple kiosks or interactive games. It provides more serial ports than any of

our other controllers, and offers the largest possible show memory capacity.

8-2 V16+ Hardware Reference

Specifications

Size XE "Size" Standard 2U rack mount (3.5” x 19” x 6.5”), 10 lbs

Power: 100 to 250 VAC, 50 to 60 Hz, 25 watts maximum.

UL listed Class 2 power adapter

Environment: 0 to 35 C (32 to 100 F)

0 to 90% relative humidity, non-condensing

Front Panel: 2x40 LCD Display

Power LED

Acknowledge (ACK) LED

Error LED

16 Serial Activity LEDs

16 Input Status LEDs

16 Output Status LEDs

16 Pushbuttons

Rear Panel: Programming Port DB-9M

16 Serial Ports DB-9M

MIDI Input 5-pin DIN Female

MIDI Output 5-pin DIN Female

Discrete Inputs DB-37M

Discrete Outputs DB-37F

NTSC or PAL Sync Input BNC

Power 5-pin DIN Female

Serial Ports: (16) RS-232C

300 baud - 38.4 Kbaud

7, 8, or 9 Data Bits

1 or 2 Stop Bits

All parity types

4 ports can be configured as RS-485/422

1 port can be configured as MIDI

Opto Inputs: (16) 24 VDC, 20 mA maximum

Reconfigurable for voltages down to 5 VDC or for pure

contact-closure operation. Trigger latency < 1 frame.

Relay Outputs: (16) Contact Closures limited internally to 900 mA with

self-restoring polymer fuses.

Show Memory: 32 Kbyte EEPROM, expandable to 64 Kbytes.

Nonvolatile, robust memory retains show data permanently

with no battery backup required.

V16+ Hardware Reference 8-3

V
1
6
+

Serial Ports
The V16+ provides 16 serial ports which may be configured as shown below:

Port Type Description Connector

0 RS-232 Programmer Port DB9M

1 RS-232* / RS-485 Port 1 DB9M

2 RS-232* / RS-485 Port 2 DB9M

3 RS-232* / RS-485 Port 3 DB9M

4 RS-232* / RS-485 Port 4 DB9M

5 RS-232 Port 5 DB9M

6 RS-232 Port 6 DB9M

7 RS-232 Port 7 DB9M

8 RS-232 Port 8 DB9M

9 RS-232 Port 9 DB9M

10 RS-232 Port 10 DB9M

11 RS-232 Port 11 DB9M

12 RS-232 Port 12 DB9M

13 RS-232 Port 13 DB9M

14 RS-232 Port 14 DB9M

15 RS-232 Port 15 DB9M

16 RS-232* / MIDI Port 16 DB9M / (2) 5 Pin DIN F

Table 1 – V16+ Ports located on the Rear Panel. *Factory Default Setting

Note RS-485 is used throughout this manual to denote ports that may be used

for both RS-422 and RS-485 communication.

Programmer Port

The Programmer Port is an RS-232C serial port used to program the V16+.

Pin Connection

2 RS-232 TXD

3 RS-232 RXD

5 GND

8 +12V Pull Up

Table 2 – Programmer port connections.

8-4 V16+ Hardware Reference

Ports 1-4: RS-232 or RS-485

Ports 1-4 are factory configured as RS-232C, but can be reconfigured as a group

as RS-485. The V16+ includes internal 220 Ohm termination for RS-485, so an

external terminator for the unit is not necessary. To configure ports 1-4 for RS-

485/422 operation, the 1488 and 1499 RS-232 Driver and Receiver chips must

be removed and 75174 and 75175 Driver and Receiver chips installed. (See the

Appendices for manufacturer’s part numbers.)

Pin RS-232 Connection RS-485 Connection

2 RS-232 RXD RS-485 RX+

3 RS-232 TXD RS-485 TX+

4 +12V Pull up +12V Pull up

5 GND GND

6 N/C RS-485 RX-

7 +12V Pull up +12V Pull up

9 N/C RS-485 TX-

Table 3 – Ports 1-4 connections for RS-232 and RS-485 operation.

 Configuring Ports 1-4 as RS-485

1. Remove the 1489 chip from U49 and the 1488 chip from U54.

2. Install a 75174 chip in U46 and a 75175 RS-485 chip in U47.

3. Install a 10K R-Pack in RP12 and a 220 Ohm SIP in RP13.

 Configuring Ports 1-4 as RS-232

1. Remove the 75174 chip from U46 and the 75175 chip from U47.

2. Install a 1489 chip in U49 and a 1488 chip in U54.

3. Remove the resistor packs located in RP12 and RP13.

Ports 5-15: RS-232

Ports 5-15 are permanently configured as RS-232C serial ports.

Pin Connection

2 RS-232 RXD

3 RS-232 TXD

4 +12V Pull Up

5 GND

7 +12V Pull Up

Table 4 – Ports 1-15 connections for RS-232 operation.

V16+ Hardware Reference 8-5

V
1
6
+

 Port 16: RS-232 or MIDI

Port 16 is factory configured as an RS-232C serial port, but can be reconfigured

as a MIDI port. When reconfigured, MIDI Input is received by the MIDI IN

port, and MIDI Output is sent out the MIDI OUT port.

 Configuring Port 16 as MIDI

1. Set jumpers W1 and W2 to the “MIDI” position.

2. Configure Port 16 in WinScript as “MIDI”.

3. Configure the baud rate of Port 16 in WinScript as 31250 baud.

MIDI IN

Pin Connection

4 MIDI RX+

5 MIDI RX-

Table 5 – MIDI IN connections.

MIDI OUT

Pin Connection

2 GND

4 MIDI TX+

5 MIDI TX-

Table 6 – MIDI OUT connections.

 Configuring Port 16 as RS-232

1. Set jumpers W1 and W2 to the “RS-232” position.

LCD Display
The V16+ includes a standard 2x40 (80 character) Backlit LCD Display. An

internal potentiometer is used to adjust the contrast (viewing angle) of the LCD.

 Adjusting the LCD contrast

1. To make the display lighter, turn “CONTRAST” control R8 clockwise.

2. To make the display darker, turn R8 counter-clockwise.

8-6 V16+ Hardware Reference

Digital Inputs

Input Connector

The V16+ includes 16 Opto-isolated inputs that can control the show operation.

These inputs can be activated by pressing the corresponding front panel button

(button 1 corresponds with input 1, etc.) or by electrically activating the input

through the Parallel Inputs connector located on the rear panel.

Pin Connection Pin Connection

1 Input 1 20 Input 1 Return

2 Input 2 21 Input 2 Return

3 Input 3 22 Input 3 Return

4 Input 4 23 Input 4 Return

5 Input 5 24 Input 5 Return

6 Input 6 25 Input 6 Return

7 Input 7 26 Input 7 Return

8 Input 8 27 Input 8 Return

9 Input 9 28 Input 9 Return

10 Input 10 29 Input 10 Return

11 Input 11 30 Input 11 Return

12 Input 12 31 Input 12 Return

13 Input 13 32 Input 13 Return

14 Input 14 33 Input 14 Return

15 Input 15 34 Input 15 Return

16 Input 16 35 Input 16 Return

17 N/C 36 N/C

18 N/C 37 N/C

19 N/C

Table 7 – Parallel Input connections.

Two forms of input signal can be applied to the Parallel Inputs connector:

Voltage Inputs, and Contact Closures. When a specific input on the V16+ is

configured for Voltage Inputs, power for the connection is provided by an

external source (in-rack power supply etc.), but when the input is configured as

a Contact Closure, power is taken internally from the V16+.

V16+ Hardware Reference 8-7

V
1
6
+

 Voltage Inputs vs. Contact Closures

There are many advantages to using Voltage Inputs over Contact Closures.

First, a Contact Closure can only be located a short distance from the V16+.

Second, Contact Closures use the V16+’s own power supply, so external wiring

errors can damage the entire unit.

Figure 1 – Contact Closure Schematic.

Figure 2 – Voltage Input Schematic.

Configuration Maximum Distance

Contact Closures 10ft

Voltage Inputs Limited only by wire gauge

Table 8 – Voltage Inputs are advantageous for many reasons, including the distance at

which they are operational.

8-8 V16+ Hardware Reference

Input Configuration

Two sets of DIP switches on the main V16+ circuit board select the type of each

input. Switches SW17 & SW18 configure Inputs 1-8, while switches SW19 &

SW20 configure Inputs 9-16.

Figure 3 – Inputs 1-4 and 9-12 are Voltage Inputs. Inputs 5-9 and 13-16 are Contact

Closures.

 Configuring Inputs as Voltage Inputs

1. Install the appropriate Resistor Pack in RP6 and RP8 (see table 9).

2. For each Input that is to be a voltage input, switch both corresponding DIP

switches (one position on SW17 & SW18 for Inputs 1-8 or one position on

SW19 & SW20 for inputs 9-16) to the “OFF” (or down) position. In the

Figure, Inputs 1-4 and 9-12 have been configured as voltage inputs.

Voltage Level Used Resistor Pack Value

5V 180 Ohm

12V 470 Ohm

24V 1.5K Ohm*

Table 9 – Recommended Resistor Pack values for Voltage Inputs.

* Factory Default Setting

 Configuring Inputs as Contact Closures

1. For each Input that is to be a contact closure, switch both corresponding

DIP switches (one position on SW17 & SW18 for Inputs 1-8 or one position

on SW19 & SW20 for inputs 9-16) to the “ON” (or up) position. In the

Figure, Inputs 5-8 and 13-16 have been configured as contact closures.

V16+ Hardware Reference 8-9

V
1
6
+

 Input Wiring

 Connecting a Voltage Input

1. Verify that the appropriate Resistor Pack is installed in sockets RP6 and

RP8 (see Table 9).

2. Locate DIP switches SW17, SW18, SW19, and SW20.

3. Verify that the appropriate switches are configured for Voltage Input.

4. Using a Female DB37 connector, attach the appropriate wire from the Input

signal pin (pin 1 for Input1, pin 2 for Input2, etc.) to the positive terminal

of the external power supply.

5. Connect the negative terminal of the external power supply to one of the

terminals of the contact closure or push button.

6. Connect the appropriate Input Return pin to the other terminal of the contact

closure (pin 20 for Input1, Pin 21 for Input2, etc.)

Figure 4 – Sample connection for a Voltage Input to Input1 of the Parallel Inputs

connector. The terminal blocks are used for power bussing and modularization of the

input signals.

8-10 V16+ Hardware Reference

 Connecting a Contact Closure

1. Locate DIP switches SW17, SW18, SW19, and SW20.

2. Verify that the appropriate switches are configured for Contact Closures.

3. Using a Female DB37, attach the appropriate wire from the Input signal pin

(pin 1 for Input1, pin 2 for Input2, etc.) to one of the terminals of the

external contact.

4. Connect the appropriate Input Return pin to the other terminal of the

external contact (pin 20 for Input1, Pin 21 for Input2, etc.)

Figure 5 – Sample connection for a Contact Closure Input to Input1 of the Parallel

Inputs connector.

Disabling Front Panel Buttons

The V16 provides 16 front panel buttons which duplicate the function of the 16

external inputs. This is convenient for test purposes, but it is often desirable to

prevent the unintentional activation of these signals by the front panel. Any

signals that should not be allowed front panel control should be assigned to

inputs 9 through 16. These front panel switches may be individually disabled

using DIP switch SW21.

 Disabling front panel buttons 9-16

1. For each button to be disabled, move the corresponding switch of SW21 to

the “OFF” position (Switch 1 for Input9, Switch 2 for Input10, etc.)

V16+ Hardware Reference 8-11

V
1
6
+

Digital Outputs

Output Connector

In addition to discrete input, the V16+ provides 16 Dry-Contact Relay Outputs

for discrete control.

Note The Relay Outputs are fused at 900mA using self-restoring polymer

fuses. If an overload occurs, the fuse will open until the problem is corrected;

then heal itself.

Pin Connection Pin Connection

1 Output 1 20 Output 1 Return

2 Output 2 21 Output 2 Return

3 Output 3 22 Output 3 Return

4 Output 4 23 Output 4 Return

5 Output 5 24 Output 5 Return

6 Output 6 25 Output 6 Return

7 Output 7 26 Output 7 Return

8 Output 8 27 Output 8 Return

9 Output 9 28 Output 9 Return

10 Output 10 29 Output 10 Return

11 Output 11 30 Output 11 Return

12 Output 12 31 Output 12 Return

13 Output 13 32 Output 13 Return

14 Output 14 33 Output 14 Return

15 Output 15 34 Output 15 Return

16 Output 16 35 Output 16 Return

17 N/C 36 N/C

18 N/C 37 N/C

19 N/C

Table 10 – Parallel Output connections.

8-12 V16+ Hardware Reference

Output Wiring

 Connecting an output to a non-inductive load

1. Using a DB37 Male connector, attach the appropriate Output pin (pin 1 for

Output1, pin 2 for Output2, etc.) on the Parallel Outputs connector to the

positive terminal of the external power supply.

2. Using the same DB37 Male connector, connect the corresponding Output

Return pin (pin 20 for Output1, Pin 21 for Output2, etc.) to the positive

terminal of the device that is receiving the output signal.

3. Connect the negative terminal of the device that is receiving the output

signal to the negative terminal of the external power supply.

Figure 6 – An indicator lamp is a common example of a non-inductive load.

V16+ Hardware Reference 8-13

V
1
6
+

 Connecting an output to an inductive load

1. Using a DB37 Male connector, connect the appropriate Output pin (pin 1

for Output1, pin 2 for Output2, etc.) on the Parallel Outputs connector to the

positive terminal of the external power supply.

2. Using the same DB37 Male connector, connect the corresponding Output

Return pin (pin 20 for Output1, Pin 21 for Output2, etc.) to the positive

terminal of the device that is receiving the output signal.

3. Connect the negative terminal of the device that is receiving the output

signal to the negative terminal of the external power supply.

4. Connect an appropriate 1N4000-series (1N4001-1N4007) diode across the

load.

Figure 7 – A relay coil or solenoid is a common example of an inductive load and must

have a 1N4000-Series snubber diode placed across it. Be sure to observe proper polarity
(anode to negative side).

8-14 V16+ Hardware Reference

Video Synchronization

The V16+ is designed to extract the vertical frame clock from an external video

sync signal. This signal should be NTSC or PAL composite video at the

standard sync level of 4.1 volts peak-to-peak.

The sync signal is connected to the V16+ via a rear panel BNC connector. If

additional devices are to be wired to the same sync signal, a BNC “T” may be

used to daisy-chain the signal. If the V16+ is the last device in the chain, the

internal 75-Ohm terminator should be connected (factory default); otherwise it

should be disconnected.

A common sync connection scheme is to use the “Gen” output of a player to

drive the “C-Sync” inputs of another player, with the second “C-Sync”

connector of that player connecting to a third, and so on. The final player’s

second “C-Sync” connector would go to the V16+, which should have its

terminator enabled.

The V16+ may also work with “Black Burst Sync”, if its level is high enough.

Black burst sync is generally provided not at sync level, but at video level

(approximately 0.7 volts peak-to-peak). Signals at this level should not be

terminated with the 75-Ohm terminator. If you are trying to use a video level

signal, have the terminator disconnected, and still can’t get the sync to work

reliably, it is possible to increase the V16+ input sensitivity by removing R16.

Since this procedure is performed with wire cutters, it should not be undertaken

lightly. It also voids the warranty. But if it’s 3 AM in Abu Dhabi and your

show opens at dawn, what the heck.

Sync Termination

Composite sync signals contain high frequency components. When the signal

reaches the end of the line it has a tendency to reflect back toward the sync

generator. This reflected signal is undesirable because it degrades the “real”

signal. To prevent signal reflection, a terminating resistor is usually placed at

the end of the line.

The V16+ provides an internal 75-Ohm terminating resistor. The unit is shipped

from the factory with termination enabled (jumper installed).

 Configuring sync termination

1. If the V16+ is the last unit in the daisy-chain, verify that W3 is present.

2. If the V16+ is NOT the last unit on the daisy-chain, remove W3.

V16+ Hardware Reference 8-15

V
1
6
+

Power Supply

The V16+ includes an external universal power supply that allows connection to

many domestic as well as international wall voltages (110VAC, 220VAC,

200VAC) without special configuration.

The power ratings for the V16+ external power supply are as follows:

Input: 100-250VAC; 50-60Hz; 0.7-0.3A

Output: +5V, 4.0A; +12V, 1.0A; -12V, 0.6A

Pin Connection

1 Common

2 N/C

3 +5V

4 -12V

5 +12V

Table 11 – V16+ Power jack connections.

Note When connecting the V16+ to power, DO NOT insert the power

connector into the MIDI In or MIDI Out jacks. This could damage the unit!

8-16 V16+ Hardware Reference

Firmware

The operating system that resides in the V16+ is called the “firmware”. Periodic

firmware upgrades are made in order to add new features, streamline operation,

and fix bugs. For pricing and availability of firmware upgrades, contact Alcorn

McBride.

Instead of purchasing your firmware upgrades, you can program them into

EPROMs yourself. The latest firmware can be downloaded from Alcorn

McBride’s WWW site on the Internet. The address is
http://www.alcorn.com/

 Upgrading show control firmware

1. Open the V16+ and locate socket U4 (It is labeled

“OPERATING SYSTEM FIRMWARE”).

2. Remove the old firmware EPROM from socket U4.

3. Install the new firmware EPROM into socket U4.

Show Memory
When scripts are compiled and downloaded to the V16+, the data is stored in the

Show Memory. The V16+ comes standard with 32K of show memory, but for

larger shows (>4000 events) the memory may be upgraded to 64K. For pricing

and availability of show memory upgrades, contact Alcorn McBride.

 Upgrading show memory

Socket U8 contains the standard 32K EEPROM. Socket U15 is available for

expansion memory.

1. Open the V16+ and locate chip sockets U8 and U15 (They are labeled

“SHOW DATA EEPROM 1” and “SHOW DATA EEPROM 2”).

2. To upgrade from 32K to 40K, install an 8K EEPROM (28C64) in U15.

3. To upgrade from 32K to 64K, install a 32K EEPROM (28C256) in U15.

V2+ Hardware Reference 10-1

V
2
+

V2+ Hardware Reference

The V2+ is the smallest of our “V” series controllers. It offers all of the same

types of resources as our V4+ and V16+, just fewer of them. It is ideally suited

for displays, trade shows and kiosks.

10-2 V2+ Hardware Reference

Specifications

Size XE "Size" Standard 1U rack mount (1.75” x 19” x 6.5”), 8 lbs

Power: 120 or 240 VAC (specify when ordering), 50 to 60 Hz

25 watts maximum.

UL listed Class 2 power adapter

Environment: 0 to 35 C (32 to 100 F)

0 to 90% relative humidity, non-condensing

Front Panel: 2x16 LCD Display

Power LED

Acknowledge (ACK) LED

Error LED

2 Serial Activity LEDs

8 Input Status LEDs

8 Output Status LEDs

8 Pushbuttons

Rear Panel: Programming Port DB-9M

2 Serial Ports DB-9M

MIDI Input 5-pin DIN Female

MIDI Output 5-pin DIN Female

Discrete I/O DB-37F

NTSC or PAL Sync Input BNC

Power Barrel Connector

Serial Ports: (2) RS-232C

300 baud - 38.4 Kbaud

7, 8, or 9 Data Bits

1 or 2 Stop Bits

All parity types

1 port can be configured as MIDI

Opto Inputs: (8) 24 VDC, 20 mA maximum

Reconfigurable for voltages down to 5 VDC or for pure

contact-closure operation. Trigger latency < 1 frame.

Driver Outputs: (8) Lamp drivers rated at 500mA each when used

individually, 150mA each if all in use.

Show Memory: 24 Kbyte EEPROM. Nonvolatile, robust memory retains

show data permanently with no battery backup required.

V2+ Hardware Reference 10-3

V
2
+

Serial Ports
The V2+ provides two serial ports which may be configured as shown below:

Port Type Description Connector

0 RS-232 Programmer Port DB9M

1 RS-232 Port 1 DB9M

2 RS-232* / MIDI Port 2 DB9M / (2) 5 Pin DIN F

Table 1 – V2+ Ports located on the Rear Panel. *Factory Default Setting

Programmer Port

The Programmer Port is an RS-232C serial port used to program the V2+.

Pin Connection

2 RS-232 TXD

3 RS-232 RXD

5 GND

8 +12V Pull Up

Table 2 – Programmer port connections.

Port 1: RS-232

Port 1 is permanently configured as RS-232C.

Pin Connection

2 RS-232 RXD

3 RS-232 TXD

4 +12V Pull Up

5 GND

7 +12V Pull Up

Table 3 – Ports 1-15 connections for RS-232 operation.

10-4 V2+ Hardware Reference

Port 2: RS-232 or MIDI

Port 2 is factory configured as an RS-232C serial port, but can be reconfigured

as a MIDI port. When reconfigured, MIDI Input is received by the MIDI IN

port, and MIDI Output is sent out the MIDI OUT port. The MIDI Thru port

echoes the data received on MIDI IN.

 Configuring Port 2 as MIDI

1. Place the jumper on W2 and W3 in the direction toward the “MIDI” text.

2. Configure Port 2 in WinScript as “MIDI”

3. Configure the baud rate of Port 2 in WinScript as 31250 baud

MIDI IN

Pin Connection

4 MIDI RX+

5 MIDI RX-

Table 4 – MIDI IN connections.

MIDI OUT and THRU

Pin Connection

2 GND

4 MIDI TX+

5 MIDI TX-

Table 5 – MIDI OUT and THRU connections.

 Configuring Port 2 as RS-232

1. Place the jumpers on W2 and W3 in the direction toward the “RS-232” text.

LCD Display
The V2+ includes a standard 2x16 (32 character) Backlit LCD Display. An

internal potentiometer is used to adjust the contrast (viewing angle) of the LCD.

 Adjusting the LCD contrast

1. To make the display lighter, turn “CONTRAST” control VR1 clockwise.

2. To make the display darker, turn VR1 counter-clockwise.

V2+ Hardware Reference 10-5

V
2
+

Digital Inputs
The V2+ includes 16 inputs (8 button inputs and 8 Opto-isolated inputs) that can

help control the flow of a show system. The button inputs are activated by

pressing the corresponding front panel button (button 1 corresponds with input

1, etc.), and the Opto-isolated inputs are activated by electrically activating the

input through the Parallel I/O connector located on the rear panel. The

connections for the Parallel I/O connector are as follows:

Pin Connection Pin Connection

1 Voltage Input 9 20 Voltage Input 9 Return

2 Voltage Input 10 21 Voltage Input 10 Return

3 Voltage Input 11 22 Voltage Input 11 Return

4 Voltage Input 12 23 Voltage Input 12 Return

5 Voltage Input 13 24 Voltage Input 13 Return

6 Voltage Input 14 25 Voltage Input 14 Return

7 Voltage Input 15 26 Voltage Input 15 Return

8 Voltage Input 16 27 Voltage Input 16 Return

9 Output 1 28 Contact Closure Input 9

10 Output 2 29 Contact Closure Input 10

11 Output 3 30 Contact Closure Input 11

12 Output 4 31 Contact Closure Input 12

13 Output 5 32 Contact Closure Input 13

14 Output 6 33 Contact Closure Input 14

15 Output 7 34 Contact Closure Input 15

16 Output 8 35 Contact Closure Input 16

17 Clamping Diodes 36 GND

18 N/C 37 GND

19 GND

Table 6 – Parallel I/O connector Inputs.

Two forms of input signal can be applied to the Parallel I/O connector: Voltage

Inputs, and Contact Closures. Voltage Inputs and Contact Closure Inputs, while

activating the same input, are available on separate pins of the Parallel I/O

connector. They are intended to be used separately. Applying both a Voltage

and a Contact Closure to the same input simultaneously may damage the unit.

10-6 V2+ Hardware Reference

Voltage Inputs vs. Contact Closures

There are many advantages to using Voltage Inputs over Contact Closures.

First, a Contact Closure can only be located a short distance from the V2+.

Second, Contact Closures use the V2+’s own power supply, so external wiring

errors can damage the entire unit.

Figure 1 – Contact Closure Schematic.

Figure 2 – Voltage Input Schematic.

Configuration Maximum Distance

Contact Closures 10ft

Voltage Inputs Limited only by wire gauge

Table 7 – Voltage Inputs are advantageous for many reasons, including the distance at

which they are operational.

V2+ Hardware Reference 10-7

V
2
+

Input Wiring

 Connecting a Voltage Input

1. Open the V2+ and verify that the correct Resistor Pack is installed in RP5

(see table 8)

2. Connect the appropriate wire from the Voltage Input signal pin (pin 1 for

Input9, pin 2 for Input10, etc.) to the positive terminal of the 24 VDC

external power supply.

3. Connect the negative terminal of the external power supply to one of the

terminals of the contact closure.

4. Connect the appropriate Voltage Input Return pin on the Parallel I/O

connector to the other terminal of the contact closure (pin 20 for Input9, Pin

21 for Input10, etc.)

Voltage Level Used Resistor Pack Value

5V 180 Ohm

12V 470 Ohm

24V 1.5K Ohm*

Table 8 – Recommended Resistor Pack values for Voltage Inputs.

* Factory Default Setting

Figure 3 – Sample connection for a Voltage Input to Input9 of the Parallel I/O connector.

The terminal blocks are used for power bussing and modularization of the input signals.

10-8 V2+ Hardware Reference

 Connecting a Contact Closure

1. Connect the appropriate wire from the Input signal pin (pin 28 for Input9,

pin 29 for Input10, etc.) on the Parallel I/O connector to one of the

terminals of the external contact.

2. Connect one of the GND pins on the Parallel I/O connector to the other

terminal of the external contact.

Figure 4 – Sample connection for a Contact Closure Input to Input9 of the Parallel I/O

connector.

V2+ Hardware Reference 10-9

V
2
+

Digital Outputs

Output Connector

In addition to discrete inputs, the V2+ provides 8 transistor outputs (lamp

drivers) for discrete control. These outputs are capable of sinking up to 500 mA

each when used individually. The amount of current that each output can sink

decreases when the number of outputs being used at the same time increases.

For example: if all of the outputs are used at the same time they can only sink

150mA each.

The connections for the Parallel I/O connector are as follows:

Pin Connection Pin Connection

1 Voltage Input 9 20 Voltage Input 9 Return

2 Voltage Input 10 21 Voltage Input 10 Return

3 Voltage Input 11 22 Voltage Input 11 Return

4 Voltage Input 12 23 Voltage Input 12 Return

5 Voltage Input 13 24 Voltage Input 13 Return

6 Voltage Input 14 25 Voltage Input 14 Return

7 Voltage Input 15 26 Voltage Input 15 Return

8 Voltage Input 16 27 Voltage Input 16 Return

9 Output 1 28 Contact Closure Input 9

10 Output 2 29 Contact Closure Input 10

11 Output 3 30 Contact Closure Input 11

12 Output 4 31 Contact Closure Input 12

13 Output 5 32 Contact Closure Input 13

14 Output 6 33 Contact Closure Input 14

15 Output 7 34 Contact Closure Input 15

16 Output 8 35 Contact Closure Input 16

17 Clamping Diodes 36 GND

18 N/C 37 GND

19 GND

Table 9 – Parallel I/O connector Outputs.

Note When the outputs are used to drive inductive loads (relay coils, etc.), pin

17 can be connected to the powered side of the load to provide additional

snubber diode protection.

10-10 V2+ Hardware Reference

External Connection

 Connecting an output to a non-inductive load

1. Connect the positive terminal of the external power supply to the positive

terminal of the device that is receiving the signal.

2. Connect the negative terminal of the power supply to one of the GND pins

on the Parallel I/O connector.

3. Connect the appropriate Output pin (pin 9 for Output1, pin 10 for Output2,

etc.) on the Parallel I/O connector to the negative terminal of the device that

is receiving the output signal

Figure 5 – An indicator lamp is a common example of a non-inductive load.

V2+ Hardware Reference 10-11

V
2
+

 Connecting an output to an inductive load

1. Connect the positive terminal of the external power supply to the positive

terminal of the device that is receiving the signal.

2. If external snubber diodes are not used, connect the Clamping Diodes pin

(pin 17) on the Parallel I/O connector to the positive terminal of the external

power supply.

3. Connect the negative terminal of the power supply to one of the GND pins

on the Parallel I/O connector..

4. Connect the appropriate Output pin (pin 9 for Output1, pin 10 for Output2,

etc.) on the Parallel I/O connector to the negative terminal of the device that

is receiving the output signal.

Figure 6 – A relay coil or solenoid is a common example of an inductive load and must

have a 1N4000-Series snubber diode placed across it. Be sure to observe proper polarity
(anode to negative side).

10-12 V2+ Hardware Reference

Power Supply

The V2+ includes an external power supply that allows connection to most

domestic wall voltages (110VAC). A 220VAC model is available upon request.

The power ratings for the V2+ external power supply are as follows:

Input: 120 VAC; 60Hz; 15 watts max.

Output: 9 VDC; 1A

Note Make sure that any power supply used with the V2+ is the correct voltage

and is configured correctly.

Firmware

The operating system that resides in the V2+ is called the “firmware”. Periodic

firmware upgrades are made in order to add new features, streamline operation,

and fix bugs. For pricing and availability of firmware upgrades, contact Alcorn

McBride.

Instead of purchasing your firmware upgrades, you can program them into

EPROMs yourself. The latest firmware can be downloaded from Alcorn

McBride’s WWW site on the Internet. The address is
http://www.alcorn.com/

 Upgrading show control firmware

1. Open the V2+ and locate socket U1.

2. Remove the old firmware EPROM from socket U1.

3. Install the new firmware EPROM into socket U1.

IO64 Hardware Reference 12-1

IO
6
4

IO64 Hardware Reference

The IO64 is an intelligent I/O expansion unit which may also be used as a stand-

alone show controller. It provides a large number of inputs and outputs in a very

small package, and features easy to use rear panel terminal blocks. It is ideal for

I/O intensive applications such as process control.

12-2 IO64 Hardware Reference

Specifications

Size XE "Size" Standard 1U rack mount (1.75” x 19” x 5.5”), 3 lbs

Power: 100 to 250 VAC, 50 to 60 Hz, 25 watts maximum.

UL listed Class 2 power adapter

Environment: 0 to 35 C (32 to 100 F)

0 to 90% relative humidity, non-condensing

Front Panel:
Power LED

Acknowledge (ACK) LED

Error LED

1 Serial Activity LED

32 Input Status LEDs

32 Output Status LEDs

Rear Panel: Host (Programmer) Serial Port DB-9M

Remote Serial Port DB-9M

5 Pin DIN MIDI Connector

Discrete I/O Phoenix Type Connectors

(Mating Connectors with Screw Terminals Included)

5 Pin DIN Power Connector

Serial Port: RS-232C

300 baud - 38.4 Kbaud

7, 8, or 9 Data Bits

1 or 2 Stop Bits

All parity types

Port may also be configured for RS-422/485 or MIDI

Opto Inputs: (32) 24 VDC, 20 mA maximum

Reconfigurable for voltages down to 5 operation.

Trigger latency < 1 frame.

Relay Outputs: (32) Contact Closures limited internally to 900 mA with

self-restoring polymer fuses.

Show Memory: 24 Kbyte EEPROM. Nonvolatile, robust memory retains

show data permanently with no battery backup required.

IO64 Hardware Reference 12-3

IO
6
4

Serial Ports
When used as an I/O expander, the IO64’s “Host” port connects to one of our

other show controllers (or any other serial port). When used as a show

controller, its “Host” port becomes a programming port.

The remote port may be configured for RS-232, RS-422/485 or MIDI operation.

Port Type Description Connector

0 RS-232 Host Port DB9M

1 RS-232* / 485 / MIDI Remote Port DB9M / 5 Pin DIN F

Table 1 – IO64 Ports located on the Rear Panel. *Factory Default Setting

Note RS-485 is used throughout this manual to denote ports that may be used

for both RS-422 and RS-485 communication.

Host Port

The Host Port is an RS-232C serial port used to program the IO64.

Pin Connection

2 RS-232 TXD

3 RS-232 RXD

5 GND

Table 2 – Programmer port connections

12-4 IO64 Hardware Reference

Remote Port: RS-232, RS-485, MIDI

The Remote Port is factory configured as an RS-232C serial port, but can be

reconfigured as an RS-485 or MIDI port. When reconfigured as a MIDI port,

MIDI Input and Output is received on and sent out the MIDI connector.

Pin RS-232 Connection RS-485 Connection

1 N/C N/C

2 RS-232 RXD N/C

3 RS-232 TXD N/C

4 N/C N/C

5 GND GND

6 N/C RS-485 TX+

7 N/C RS-485 TX-

8 N/C RS-485 RX+

9 N/C RS-485 RX-

Table 3 – Remote Port connections for RS-232 and RS-485 operation

 Configuring the Remote Port as RS-485

1. Set jumper W1 to the “RS-485” position.

2. Set Jumper W3 to the RS-232 position. (This selects normal rather than

MIDI baud rates.)

3. It is often desirable to terminate RS-422 and RS-485 signals at the receiving

end. To terminate the line at the IO64 end, connect a 220 Ohm resistor

between pin 8 and pin 9 of Remote Port cable’s connector inside the

housing. To terminate the receiver at the remote end, connect a 220 Ohm

resistor across the RXD pins of the remote equipment.

 Configuring the Remote Port as MIDI

1. Set jumper W1 to the “MIDI” position.

2. Set Jumper W3 to the MIDI position.

 Configuring the Remote Port as RS-232

1. Set jumper W1 to the “RS-232” position

2. Set Jumper W3 to the RS-232 position.

IO64 Hardware Reference 12-5

IO
6
4

MIDI Input/Output Cable

The IO64’s rear panel MIDI connector may be directly connected to a device

that sends MIDI data. In order to both send and receive MIDI Show Control

messages at the same time, a special MIDI I/O cable must be made to allow

MIDI Input and MIDI Output jacks to be available. The cable should look like

this:

Figure 1 – IO64 MIDI Input/Output Cable.

In addition, jumper W2 should be installed to provide the shield for the MIDI

output cable.

12-6 IO64 Hardware Reference

Digital Inputs
The IO64 includes 32 Opto-isolated inputs that can help control the flow of a

show system. These inputs can be activated through the Phoenix Type Input

Connectors located on the rear panel.

Note The Opto-Inputs on the IO64 are polarity-sensitive. For a specific input

to be correctly connected, positive voltage must be connected to the top socket

of the Phoenix connector, and negative voltage must be connected to the bottom

socket.

 Connecting an Input

1. Verify that the appropriate Resistor Pack is installed in each of the sockets

(see Tables 4 and 5 below)

2. Using a Male Phoenix connector, connect the appropriate wire from the

Input signal pin (top pin 1 for Input1, top pin 2 for Input2, etc.) to the

positive terminal of the external power supply.

3. Connect the negative terminal of the external power supply to one of the

terminals of the contact closure

4. Connect the appropriate Input Return pin to the other terminal of the contact

closure (bottom pin 1 for Input1, bottom pin 2 for Input2, etc.)

Example: External Switch

Figure 2 – An external switch or button is used to activate Input1.

IO64 Hardware Reference 12-7

IO
6
4

Resistor Pack Inputs

RP8 1-8

RP6 9-16

RP12 17-24

RP10 25-32

Table 4 – Inputs that are affected by particular Resistor Pack values

Voltage Level Used Resistor Pack Value

5V 180 Ohm

12V 470 Ohm

24V 1.5K Ohm*

Table 5 – Recommended Resistor Pack values.

*Factory Default Setting

12-8 IO64 Hardware Reference

Digital Outputs
The IO64 provides 32 Dry-Contact Relay Outputs for discrete control.

Note: The Relay Outputs on the IO64 are not polarity-sensitive; therefore,

positive and negative voltages may both be connected to either the top or bottom

socket of the Phoenix connector.

The Relay Outputs are fused at 900mA using self-restoring polymer fuses. If an

overload occurs, the fuse will open until the problem is corrected; then heal

itself.

 Connecting an output to a non-inductive load

1. Using a Male Phoenix Connector, connect the appropriate Output pin (top

pin 1 for Output1, top pin 2 for Output2, etc.) on the Outputs Phoenix

Connector to the positive terminal of the external power supply.

2. Using a Phoenix Connector, connect the corresponding Output Return pin

(bottom pin 1 for Output1, bottom pin 2 for Output2, etc.) to the positive

terminal of the device that is receiving the output signal.

3. Connect the negative terminal of the device that is receiving the output

signal to the negative terminal of the external power supply.

Figure 3 – An indicator lamp is a common example of a non-inductive load.

IO64 Hardware Reference 12-9

IO
6
4

 Connecting an output to an inductive load

1. Using a Male Phoenix Connector, connect the appropriate Output pin (top

pin 1 for Output1, top pin 2 for Output2, etc.) on the Outputs Phoenix

Connector to the positive terminal of the external power supply.

2. Using a Phoenix Connector, connect the corresponding Output Return pin

(bottom pin 1 for Output1, bottom pin 2 for Output2, etc.) to the positive

terminal of the device that is receiving the output signal.

3. Connect the negative terminal of the device that is receiving the output

signal to the negative terminal of the external power supply.

4. Connect an appropriate 1N4000-series (1N4001-1N4007) diode across the

load.

Figure 4 – A relay or solenoid is a common example of an inductive load and must have

a 1N4000-Series snubber diode placed across it. Be sure to observe proper polarity
(anode to negative side).

12-10 IO64 Hardware Reference

Power Supply

The IO64 includes an external universal power supply that allows connection to

many domestic as well as international wall voltages (110VAC, 220VAC,

200VAC) without special configuration.

The power ratings for the IO64 external power supply are as follows:

Input: 100-250VAC; 50-60Hz; 50 watts max

Output: +5V, 4.0A; +12V, 1.0A; -12V, 0.6A

Pin Connection

1 Common

2 N/C

3 +5V

4 -12V

5 +12V

Table 6 – IO64 Power jack connections

Note When connecting the IO64 to power, DO NOT insert the power

connector into the MIDI jack. This could damage the unit!

Firmware

The operating system that resides in the IO64 is called the “firmware”. Periodic

firmware upgrades are made in order to add new features, streamline operation,

and fix bugs. For pricing and availability of firmware upgrades, contact Alcorn

McBride.

Instead of purchasing your firmware upgrades, you can program them into

EPROMs yourself. The latest firmware can be downloaded from Alcorn

McBride’s WWW site on the Internet. The address is
http://www.alcorn.com/

 Upgrading show control firmware

1. Remove the old firmware EPROM from socket U4.

2. Install the new firmware EPROM into socket U4.

.

DMX Machine Hardware Reference 13-1

D
M

X

M
a
c
h

in
e

DMX Machine Hardware Reference

The DMX Machine™ is a complete stand-alone lighting controller. It is ideal as

a slave to another controller, or can be used by itself for small shows or

elaborate kiosks.

13-2 DMX Machine Hardware Reference

Specifications

Size XE "Size" Standard 1U rack mount (1.75” x 19” x 6.5”), 8 lbs

Power: 120 or 240 VAC (specify when ordering), 50 to 60 Hz

25 watts maximum.

UL listed Class 2 power adapter

Environment: 0 to 35 C (32 to 100 F)

0 to 90% relative humidity, non-condensing

Front Panel: Power LED

Acknowledge (ACK) LED

Error LED

Serial Activity LED

8 Pushbuttons

Rear Panel: Programming Port DB-9M

1 Serial Port DB-9M

1 DMX Output 5-pin XLR Female

Discrete Inputs DB-37F

Power Barrel Connector

Serial Port: RS-232C

300 baud - 38.4 Kbaud

7, 8, or 9 Data Bits

1 or 2 Stop Bits

All parity types

DMX Port:
DMX-512 (1990) standard

Inputs:
(16) TTL inputs, internally pulled up to +5 VDC, suitable

for contact-closure operation. Trigger latency < 1 frame.

Show Memory: 32 Kbyte EEPROM. Nonvolatile, robust memory retains

show data permanently with no battery backup required.

DMX Machine Hardware Reference 13-3

D
M

X

M
a
c
h

in
e

Serial Ports
The DMX Machine provides serial ports which are configured as shown below:

Port Type Description Connector

0 RS-232 Programmer Port DB9M

1 RS-232 Port 1 DB9M

Table 1 – DMX Machine Ports located on the Rear Panel

Programmer Port

The Programmer Port is an RS-232C serial port used to program the

DMX Machine.

Pin Connection

2 RS-232 TXD

3 RS-232 RXD

5 GND

Table 2 – Programmer port connections

Port 1: RS-232

Port 1 is permanently configured as RS-232C.

Pin Connection

2 RS-232 RXD

3 RS-232 TXD

5 GND

Table 3 – Ports 1 connections for RS-232 operation

13-4 DMX Machine Hardware Reference

DMX Output Port
The DMX Output port connections are as follows:

Pin Connection

1 Common (Shield)

2 DMX TX-

3 DMX TX+

4 N/C

5 N/C

Table 4 – DMX Out connections

The DMX line is a differential communications signal which conforms to

RS-485 standards. This means that it utilizes both positive and negative lines to

transmit a signal, thereby reducing is susceptibility to external noise. Even

though the DMX signals are well protected from external noise, they must be

protected from INTERNAL noise as well. When the DMX controller sends a

DMX signal down the line, that signal has a tendency to reflect back toward the

DMX unit once it reaches the end of the line. This “reflected” signal is harmful

because it can degrade the quality of real signals.

To prevent signal reflection, a 120 Ohm terminating resistor should be placed

across the positive and negative receive terminals (RXD+ and RXD-) of the

LAST receiver on the line. Placing the resistor across the pins will effectively

terminate the signal at the last unit while still allowing the last dimmer to receive

the signal. Many dimmer packs provide a built in resistor and switch for such

termination. Otherwise you will need a discrete resistor.

Figure 1 – A 120-Ohm Terminating Resistor is placed across the RXD+ and RXD- lines

of the Last Receiver.

Note Some DMX Dimmers provide a switch or jumper to activate internal

termination. If your Dimmers include this feature, do not place the terminating

resistor across the receive terminals.

DMX Machine Hardware Reference 13-5

D
M

X

M
a
c
h

in
e

Digital Inputs
The DMX Machine includes 16 contact closure inputs that can help control the

flow of a show system. These inputs are activated by connecting a contact

closure from the input pins on the rear panel Parallel Input connector to ground.

(The eight front panel buttons duplicate the function of the first eight contact

closure inputs – button 1 corresponds with input 1, etc.) The connections for the

Parallel Input connector are as follows:

Pin Connection Pin Connection

1 Contact Closure Input 1 20 GND

2 Contact Closure Input 2 21 GND

3 Contact Closure Input 3 22 GND

4 Contact Closure Input 4 23 GND

5 Contact Closure Input 5 24 GND

6 Contact Closure Input 6 25 GND

7 Contact Closure Input 7 26 GND

8 Contact Closure Input 8 27 GND

9 Contact Closure Input 9 28 GND

10 Contact Closure Input 10 29 GND

11 Contact Closure Input 11 30 GND

12 Contact Closure Input 12 31 GND

13 Contact Closure Input 13 32 GND

14 Contact Closure Input 14 33 GND

15 Contact Closure Input 15 34 GND

16 Contact Closure Input 16 35 GND

17 N/C 36 N/C

18 N/C 37 N/C

19 N/C

Table 5 – Parallel Input connector Inputs

13-6 DMX Machine Hardware Reference

Input Wiring

 Connecting a Contact Closure

1. Connect the appropriate wire from the Input signal pin (pin 1 for Input1,

pin 2 for Input2, etc.) on the Parallel I/O connector to one of the terminals

of the contact closure.

2. Connect one of the GND pins on the Parallel I/O connector to the other

terminal of the contact closure.

Figure 2 – Sample connection for a Contact Closure connected to Input1 of the Parallel

Inputs connector

DMX Machine Hardware Reference 13-7

D
M

X

M
a
c
h

in
e

Power Supply

The DMX Machine includes an external power supply that allows connection to

most domestic wall voltages (110VAC). A 220VAC model is available upon

request.

The power ratings for the DMX Machine external power supply are as follows:

Input: 120 VAC; 60Hz; 15 watts max.

Output: 9 VDC; 1A

Note Make sure that any power supply used with the DMX Machine is the

correct voltage and is configured correctly.

Firmware

The operating system that resides in the DMX Machine is called the “firmware”.

Periodic firmware upgrades are made in order to add new features, streamline

operation, and fix bugs. For pricing and availability of firmware upgrades,

contact Alcorn McBride.

Instead of purchasing your firmware upgrades, you can program them into

EPROMs yourself. The latest firmware can be downloaded from Alcorn

McBride’s WWW site on the Internet. The address is
http://www.alcorn.com/

 Upgrading show control firmware

1. Open the DMX Machine and locate socket U1

2. Remove the old firmware EPROM from socket U1

3. Install the new firmware EPROM into socket U1

13-8 DMX Machine Hardware Reference

SMPTE Machine Hardware Reference 14-1

S
M

P
T

E

M
a
c
h

in
e

SMPTE Machine Hardware
Reference

The SMPTE Machine™ provides SMPTE reading and generation capabilities to

all Alcorn McBride show controllers. It allows any sequences to be triggered at

predefined timecodes.

The SMPTE Machine is ideal for installations where timecode is used to

synchronize many disparate pieces of equipment.

14-2 SMPTE Machine Hardware Reference

Specifications

Size XE "Size" Standard 1U rack mount (1.75” x 19” x 6.5”), 8 lbs

Power: 120 or 240 VAC (specify when ordering), 50 to 60 Hz

25 watts maximum.

UL listed Class 2 power adapter

Environment: 0 to 35 C (32 to 100 F)

0 to 90% relative humidity, non-condensing

Front Panel: 2x16 LCD Display

Power LED

Fault LED

Lock LED

Generate LED

3 Pushbuttons

Rear Panel: Programming Port DB-9M

2 Serial Ports DB-9M

MIDI Input 5-pin DIN Female

MIDI Output 5-pin DIN Female

MIDI Thru 5-pin DIN Female

Discrete I/O DB-37F

NTSC or PAL Sync Input BNC

Power Barrel Connector

Serial Ports: (2) RS-232C

300 baud - 38.4 Kbaud

7, 8, or 9 Data Bits

1 or 2 Stop Bits

All parity types

1 port can be configured as MIDI

Opto Inputs: (4) 24 VDC, 20 mA maximum

Reconfigurable for voltages down to 5 VDC or for pure

contact-closure operation. Trigger latency < 1 frame.

Driver Outputs: (3) Lamp drivers rated at 500mA each when used

individually, 150mA each if all in use.

SMPTE Output: 4V p-p max into 600 ohms (adjustable).

Trigger Memory: Nonvolatile, robust EEPROM memory retains trigger data

permanently with no battery backup required.

SMPTE Machine Hardware Reference 14-3

S
M

P
T

E

M
a
c
h

in
e

Serial Ports
The SMPTE Machine provides two serial ports, which may be configured as

shown below:

Port Type Description Connector

0 RS-232 Programmer Port DB9M

1 RS-232 Control Port DB9M

2 RS-232 / MIDI* Control Port DB9M / (2) 5 Pin DIN F

Table 1 – SMPTE Machine Ports located on the Rear Panel. *Factory Default Setting

Programmer Port

The Programmer Port is an RS-232C serial port used to program the SMPTE

Machine.

Pin Connection

2 RS-232 TXD

3 RS-232 RXD

5 GND

8 +12V Pull Up

Table 2 – Programmer port connections.

Port 1: RS-232

Port 1 is factory configured as an RS-232C serial port.

Pin Connection

2 RS-232 RXD

3 RS-232 TXD

4 +12V Pull Up

5 GND

7 +12V Pull Up

Table 3 – Port 2 connections for RS-232 operation.

14-4 SMPTE Machine Hardware Reference

Port 2: RS-232 or MIDI

Port 2 is factory configured as a MIDI port, but can be reconfigured as an RS-

232C serial port. For RS-232 use the connections are provided on a male DB-9

connector. For MIDI, they are provided on three 5-pin DIN connectors. When

configured for MIDI, MIDI Input is received by the MIDI IN port, and MIDI

Output is sent out the MIDI OUT port. The MIDI Thru port echoes the data

received on MIDI IN.

 Configuring Port 2 as RS-232

1. Place the jumpers on W2 and W3 in the direction toward the “RS-232” text.

Pin Connection

2 RS-232 RXD

3 RS-232 TXD

4 +12V Pull Up

5 GND

7 +12V Pull Up

Table 4 – Port 2 connections for RS-232 operation.

 Configuring Port 2 as MIDI

1. Place the jumper on W2 and W3 in the direction toward the “MIDI” text.

MIDI IN

Pin Connection

4 MIDI RX+

5 MIDI RX-

Table 5 – MIDI IN connections.

MIDI OUT and THRU

Pin Connection

2 GND

4 MIDI TX+

5 MIDI TX-

Table 6 – MIDI OUT and THRU connections.

SMPTE Machine Hardware Reference 14-5

S
M

P
T

E

M
a
c
h

in
e

SMPTE
The SMPTE Machine reads SMPTE using a 3 pin XLR female connector, and

generates it through a 3 pin XLR male.

SMPTE IN

Pin Connection

1 GND

2 Signal +

3 Signal -

Table 7 – SMPTE IN connections.

SMPTE OUT

Pin Connection

1 GND

2 Signal +

3 Signal -

Table 8 – SMPTE OUT.

SMPTE Output Signal Level

Switch SW9 selects the SMPTE Output Signal Level. Only one position of the

switch should be set to “ON” at a time.

SMPTE OUTPUT LEVEL SW9

Position Output Level (volts peak-to-peak)

1 4.0

2 3.5

3 3.0

4 2.5

5 2.0

Table 9 – SMPTE Output Level Adjustment.

Values shown assume a 600-Ohm balanced load.

14-6 SMPTE Machine Hardware Reference

SMPTE Read/Generate Sync Source

Jumper W1 Selects the SMPTE Sync Source. When reading SMPTE, this

jumper connects the incoming SMPTE signal to the SMPTE Machine. This is

the factory default position for W1. When generating SMPTE this jumper needs

to be changed if the generated SMPTE is to lock to external video sync. If the

generated SMPTE does not need to be video-locked, the position of this jumper

doesn’t matter.

 Selecting Incoming SMPTE as a Sync Source (Reading Only)

1. Set Jumper W1 to the “SMPTE” position to read external SMPTE signal.

 Selecting Video Sync as a Sync Source (Generating Only)

2. Set Jumper W1 to the “VIDEO” position to lock generated SMPTE to a

composite video sync signal.

LCD Display
The SMPTE Machine includes a standard 2x16 (32 character) Backlit LCD

Display. An internal potentiometer is used to adjust the contrast (viewing angle)

of the LCD.

 Adjusting the LCD contrast

1. To make the display lighter, turn “CONTRAST” control VR1 clockwise.

2. To make the display darker, turn VR1 counter-clockwise.

SMPTE Machine Hardware Reference 14-7

S
M

P
T

E

M
a
c
h

in
e

Digital Inputs
The SMPTE Machine includes 3 front panel buttons and 8 Opto-isolated inputs

that control the unit’s behavior. The buttons start, pause and reset the SMPTE

timecode. The Opto-isolated inputs are activated by electrically activating the

input through the Parallel I/O connector located on the rear panel.

The connections for the Parallel I/O connector are as follows:

Pin Connection Pin Connection

1 “Start” Voltage Input 20 “Start” Voltage Input Return

2 “Pause” Voltage Input 21 “Pause” Voltage Input Return

3 “Reset” Voltage Input 22 “Reset” Voltage Input Return

4 Not Used 23 Not Used

5 “Idle” Voltage Input 24 “Idle” Voltage Input 12 Return

6 Not Used 25 Not Used

7 Not Used 26 Not Used

8 Not Used 27 Not Used

9 “Running” Output 28 “Start” Contact Closure Input

10 “Fault” Output 29 “Pause” Contact Closure Input

11 “Ready” Output 30 “Reset” Contact Closure Input

12 Not Used 31 Not Used

13 Not Used 32 “Idle” Contact Closure Input

14 Not Used 33 Not Used

15 Not Used 34 Not Used

16 Not Used 35 Not Used

17 Clamping Diodes 36 GND

18 N/C 37 GND

19 GND

Table 10 – Parallel I/O connector Inputs.

Two forms of input signal can be applied to the Parallel I/O connector: Voltage

Inputs, and contact closures. Voltage Inputs and contact closure inputs, while

activating the same input, are available on separate pins of the Parallel I/O

connector. We do not recommend using both types of input simultaneously.

14-8 SMPTE Machine Hardware Reference

Voltage Inputs vs. Contact Closures

There are many advantages to using Voltage Inputs over Contact Closures.

First, a Contact Closure can only be located a short distance from the SMPTE

Machine. Second, Contact Closures use the SMPTE Machine’s own power

supply, so external wiring errors can damage the entire unit.

Figure 1 – Contact Closure Schematic.

Figure 2 – Voltage Input Schematic.

Configuration Maximum Distance

Contact Closures 10ft

Voltage Inputs Limited only by wire gauge

Table 11 – Voltage Inputs are advantageous for many reasons, including the distance at

which they are operational.

SMPTE Machine Hardware Reference 14-9

S
M

P
T

E

M
a
c
h

in
e

Input Wiring

 Connecting a Voltage Input

1. Open the SMPTE Machine and verify that the correct Resistor Pack is

installed in RP5 (see table 11).

2. Connect the appropriate wire from the Voltage Input signal pin (pin 1 for

“Start”, pin 3 for “Reset”, etc.) to the positive terminal of the 24 VDC

external power supply.

3. Connect the negative terminal of the external power supply to one of the

terminals of the contact closure.

4. Connect the appropriate Voltage Input Return pin on the Parallel I/O

connector to the other terminal of the contact closure (pin 20 for “Start”, Pin

22 for “Reset”, etc.)

Voltage Level Used Resistor Pack Value

5V 180 Ohm

12V 470 Ohm

24V 1.5K Ohm*

Table 12 – Recommended Resistor Pack values for Voltage Inputs.

* Factory Default Setting

Figure 3 – Sample connection for a Voltage Input to the “Start” input of the Parallel I/O

connector. The terminal blocks are used for power bussing and modularization of the

input signals.

14-10 SMPTE Machine Hardware Reference

 Connecting a Contact Closure

1. Connect the appropriate wire from the Input signal pin (pin 28 for “Start”,

pin 30 for “Reset”, etc.) on the Parallel I/O connector to one of the

terminals of the contact closure.

2. Connect one of the GND pins on the Parallel I/O connector to the other

terminal of the contact closure.

Figure 4 – Sample connection for a Contact Closure Input to the “Start” input of the

Parallel I/O connector

SMPTE Machine Hardware Reference 14-11

S
M

P
T

E

M
a
c
h

in
e

 Digital Outputs

Output Connector

In addition to discrete inputs, the SMPTE Machine provides transistor outputs

(lamp drivers) that indicate the unit’s state. These outputs are capable of sinking

up to 500 mA each.

The connections for the Parallel I/O connector are as follows:

Pin Connection Pin Connection

1 “Start” Voltage Input 20 “Start” Voltage Input Return

2 “Pause” Voltage Input 21 “Pause” Voltage Input Return

3 “Reset” Voltage Input 22 “Reset” Voltage Input Return

4 Not Used 23 Not Used

5 “Idle” Voltage Input 24 “Idle” Voltage Input 12 Return

6 Not Used 25 Not Used

7 Not Used 26 Not Used

8 Not Used 27 Not Used

9 “Running” Output 28 “Start” Contact Closure Input

10 “Fault” Output 29 “Pause” Contact Closure Input

11 “Ready” Output 30 “Reset” Contact Closure Input

12 Not Used 31 Not Used

13 Not Used 32 “Idle” Contact Closure Input

14 Not Used 33 Not Used

15 Not Used 34 Not Used

16 Not Used 35 Not Used

17 Clamping Diodes 36 GND

18 N/C 37 GND

19 GND

Table 13 – Parallel I/O connector Outputs

Note When the outputs are used to drive inductive loads (relay coils, etc.), pin

17 can be connected to the powered side of the load to provide additional

snubber diode protection.

14-12 SMPTE Machine Hardware Reference

External Connection

 Connecting an output to a non-inductive load

1. Connect the positive terminal of the external power supply to the positive

terminal of the device that is receiving the signal.

2. Connect the negative terminal of the power supply to one of the GND pins

on the Parallel I/O connector.

3. Connect the appropriate Output pin (pin 9 for “Running”, pin 10 for

“Fault”, etc.) on the Parallel I/O connector to the negative terminal of the

device that is receiving the output signal.

Figure 5 – An indicator lamp is a common example of a non-inductive load. This one is

connected to the “Running” output.

SMPTE Machine Hardware Reference 14-13

S
M

P
T

E

M
a
c
h

in
e

 Connecting an output to an inductive load

1. Connect the positive terminal of the external power supply to the positive

terminal of the device that is receiving the signal.

2. Connect the negative terminal of the power supply to one of the GND pins

on the Parallel I/O connector.

3. Connect the appropriate Output pin (pin 9 for “Running”, pin 10 for

“Fault”, etc.) on the Parallel I/O connector to the negative terminal of the

device that is receiving the output signal.

Figure 6 – A relay coil or solenoid is a common example of an inductive load and must

have a 1N4000-Series snubber diode placed across it. Be sure to observe proper polarity
(anode to negative side).

14-14 SMPTE Machine Hardware Reference

Video Synchronization

The SMPTE Machine is designed to extract the vertical frame clock from an

external video sync signal. This feature is only used when generating SMPTE

and locking the generated signal to Video sync. This signal should be NTSC or

PAL composite video at the standard sync level of 4.1 volts peak-to-peak.

The sync signal is connected to the SMPTE Machine via a rear panel BNC

connector. If additional devices are to be wired to the same sync signal, a BNC

“T” may be used to daisy-chain the signal. If the SMPTE Machine is the last

device in the chain, the internal 75-Ohm terminator should be connected (factory

default); otherwise it should be disconnected.

A common sync connection scheme is to use the “Gen” output of player to

drive the “C-Sync” inputs of another player, with the second “C-Sync”

connector of that player connecting to a third, and so on. The final player’s

second “C-Sync” connector would go to the SMPTE Machine, which needs to

have its terminator enabled.

The SMPTE Machine may also work with “Black Burst Sync”, if its level is

high enough. Black burst sync is generally provided not at sync level, but at

video level (approximately 0.7 volts peak-to-peak). Signals at this level should

not be terminated with the 75-Ohm terminator. If you are trying to use a video

level signal, have the terminator disconnected, and still can’t get the sync to

work reliably, it is possible to increase the SMPTE Machine input sensitivity by

removing R23. Since this procedure is performed with wire cutters, it should

not be undertaken lightly. It also voids the warranty. But if it’s 3 AM in Abu

Dhabi and your show opens at dawn, what the heck.

Sync Termination

Composite sync signals contain high frequency components. When the signal

reaches the end of the line it has a tendency to reflect back toward the sync

generator. This reflected signal is undesirable because it degrades the “real”

signal. To prevent signal reflection, a terminating resistor is usually placed at

the end of the line.

The SMPTE Machine provides an internal 75-Ohm terminating resistor. The

unit is shipped from the factory with termination enabled (jumper installed).

 Configuring sync termination

1. If the SMPTE Machine is the last unit in the daisy-chain, verify that W6 is

present.

2. If the SMPTE Machine is NOT the last unit on the daisy-chain, remove W6.

SMPTE Machine Hardware Reference 14-15

S
M

P
T

E

M
a
c
h

in
e

Power Supply

The SMPTE Machine includes an external power supply that allows connection

to most domestic wall voltages (110VAC). A 220VAC model is available upon

request.

The power ratings for the SMPTE Machine external power supply are as

follows:

Input: 120 VAC; 60Hz; 15 watts max.

Output: 9 VDC; 1A

Note Make sure that any power supply used with the SMPTE Machine is the

correct voltage and is configured correctly.

Firmware

The operating system that resides in the SMPTE Machine is called the

“firmware”. Periodic firmware upgrades are made in order to add new features,

streamline operation, and fix bugs. For pricing and availability of firmware

upgrades, contact Alcorn McBride.

Instead of purchasing your firmware upgrades, you can program them into

EPROMs yourself. The latest firmware can be downloaded from Alcorn

McBride’s WWW site on the Internet. The address is
http://www.alcorn.com/

 Upgrading show control firmware

1. Open the SMPTE Machine and locate socket U1.

2. Remove the old firmware EPROM from socket U1.

3. Install the new firmware EPROM into socket U1.

14-16 SMPTE Machine Hardware Reference

15-1 Appendix A – Adding User-Defined Serial Protocols

A
p

p
e
n

d
ic

e
s

A

Appendix A – Adding User-Defined
Serial Protocols

Alcorn McBride Show Controllers can communicate with countless types of

serial devices. Information on how these devices communicate is located in

“Protocol Files”.

Protocol Files for many devices are included with WinScript and allow you to

program your show quickly and easily by using device-specific events that are

built into serial messages and sent to the device at the specified time.

The real power of Protocol Files is that you can create your own. You can

create events with up to four parameters that are automatically built into a valid

serial message by WinScript and sent by your Show Controller.

If you come up with a great new Protocol File, send it to us! Users are

constantly raising the bar on Alcorn McBride Show Controllers, so your

Protocol File could be valuable to other users. Good Luck!

In this section you will find:

 Instructions for creating your own Protocol File

15-2 Appendix A – Adding User-Defined Serial Protocols

Creating Your Own Protocol File
Protocol files can be created or edited on any non-document mode word

processor including DOS Edit and Notepad. Word processors such as Word,

WordPad, and Word Perfect can be used as long as the files are exported to non-

rich, straight ASCII text.

IMPORTANT The WinScript Compiler will not give error messages if your

PCL file contains bad syntax. It is your responsibility to check your events

thoroughly. If there is bad syntax in an event, the WinScript Compiler will omit

some or all of the bytes.

Note The Protocol file AMIEVNTS.PCL is a special Protocol file. It provides

commands that Show Controllers can use internally. It should not be renamed,

edited, or changed in any way.

The Device Header

The file consists of a device header section named Device and then all of the

commands the device is capable of receiving. A device header has the following

example appearance:

[Device]

Version=1.0

Date=10/20/95

Author=Jeff Long

Maker=Pioneer

Model=LD-V8000

Supported=5.00

Type=D Players

Interface=Serial

DataBits=8

StopBits=1

Parity=N

BaudRate=9600,4800,1200

Protocol=DVD

Description=Pioneer LDV-8000 DVD player

The Version, Date, and Author fields are for information only. If you create

a new Protocol file, set the Version to 1.0, the Date to the current date, and the

Author to your name. If you modify and existing Protocol file, add one tenth to

the version number if it is a minor change, or one if it is a major change; change

the Date to the current date; and add your name to the Author field, separating

the names by commas.

The Maker and Model fields will appear in WinScript together when you select

a protocol. If the Protocol file is a generic protocol file, leave the Model field

blank.

15-3 Appendix A – Adding User-Defined Serial Protocols

A
p

p
e
n

d
ic

e
s

A

The Supported field indicates what firmware revision this protocol will work

under. Most protocols, especially straight ASCII ones intended for DVD or CD

players will work since rev 5.00. If the device requires firmware modification to

work, the Protocol field will be changed to that new type, and the rev number

of the Supported field will indicate that version of firmware. If a user

attempts to use this protocol, and downloads to a Show Controller with firmware

prior to this field, a compile/download error will alert the user that this unit will

not support these commands.

The Type field is currently for information only, but will eventually be used as

a description when a user right clicks on a protocol and selects "Properties". Try

to match this field with other similar devices in other Protocol files. There is no

right or wrong text to put here.

The Interface field determines what kind of device it is, and what kinds of

fields will follow. The two current possible choices for Interface are Serial

and SCSI. If the Interface is Serial, then the DataBits, StopBits, Parity, and

BaudRate fields should follow. If the interface is SCSI, then the Address

field should follow.

The DataBits field (for Serial only) determines the number of bits in the serial

data frame used for data. The three possible choices for DataBits are 7, 8, and

9. If the device supports multiple types, then separate them by commas.

The StopBits field (for Serial only) determines the number of bits in the serial

data frame used as an end-of-frame marker. The two possible choices for

StopBits are 1 and 2. . If the device supports both types, then separate them

by commas.

The Parity field (for Serial only) determines whether or not a parity bit exists

in the serial data frame used for parity checking, and if so, whether it is even or

odd parity. The three possible choices for Parity are N, E, and O. If the device

supports multiple types, then separate them by commas.

The BaudRate field (for Serial only) determines the speed of transmission of

the serial frame bits in bits per second. The possible choices for BaudRate are

300, 1200, 2400, 4800, 9600, 19200, and 38400. In the case of a MIDI serial

port, the only possible choice is 31250. If the device supports multiple types,

then separate them by commas.

The Address field (for SCSI only) determines what address the SCSI device

is set to. The possible choices for Address are 0, 1, 2, 3, 4, 5, 6, and 7. If the

device supports multiple types, then separate them by commas.

The Protocol field determines what method the Show Controller uses to send

out the bytes. For example,

the Alcorn9 protocol type tells the Show Controller to turn on the ninth bit on

the first and last bytes of each message. The possible choices for Protocol are

Alcorn9, Alcorn8, Custom, ReproBus, DVD, MIDI, ESERTC, and SonyCDROM.

Only one of these should be selected here. In general, most users will choose

the DVD, Custom, or MIDI protocol type. The only difference between DVD

and Custom is that the Show Controller expects to have tight communication

with the device, and often expect Acknowledges back from the device.

15-4 Appendix A – Adding User-Defined Serial Protocols

Device-Specific Events

Device-specific events are the meat of the Protocol file and can be quite

complicated. These events take what the user entered in WinScript's event

editor and convert the entered "Data" column information into data the protocol

will send out the port to the device. The MessageOut event is the only event

that is generally found in all Protocol files. This event ensures that the user

can—without changing the Protocol file—at least send out bytes to the device.

Here is the MessageOut event exactly as it could appear in your Protocol File:

[MessageOut]

description=Sends a user-defined message out the port

param1=port, "A valid Port"

param2=datastring|string, "A valid Data or local String"

message=@string(param2)

Making Events Efficient and Compact

Other than learning how to create each event using correct syntax, there are a

few basic guidelines that you should follow in creating events.

 Create event names that comply or are similar to existing WinScript events.

The events that are used for most media players are Spinup, Spindown,

Search, Play, Still, Mute, etc. If you have some other device like a

matrix switcher, a Patch event name is appropriate. If your device is

unique, and no other Protocol file exists with a similar device/event set,

then you can choose your own name.

 Choose event names that are short, to the point, and fit into context. A

DoYourStuff event name leaves much to be desired.

 Try to orchestrate parameters of events so that their order makes logical

sense and requires the fewest events.

 Create multiple variations of the same event if the arguments for the same

operation are mutually exclusive. Also create multiple variations of the

same event if some parameters are optional.

Creating New Events

Here is a simple Play event:

[Play:UntilFrame]

description=Plays from the current location to a frame number

supported=5.00

param1=port, "A valid Port"

param2=framestring, "A valid Frame number"

message=h02 "OPL:F" @string(param2) h03

retries=1

timeout=18000

completionack=h06

The name of the event is in brackets [Play:UntilFrame]. The sub-name is the

optional name following the colon in the brackets [Play:UntilFrame]. This

15-5 Appendix A – Adding User-Defined Serial Protocols

A
p

p
e
n

d
ic

e
s

A

sub-name is required only when you have several versions of the same event.

This sub-name should be unique from other sub-names of this same event, and

should also be as meaningful as possible. In this case [Play:UntilFrame]

means play the disc until a certain frame is reached (which is an argument to the

event). The colon is only required when a sub-name is included.

The Description field becomes the explanatory text that is displayed in Event

Wizard.

The Supported field has the same purpose as it does in the [Device] header

except for it applies to the event itself. Therefore it is possible to have a

Protocol file that is defined to be supported under firmware revision 5.30, but

some of the events only work under revision 5.50 and later. The compiler first

checks the Protocol, and then the individual event. Under most circumstances,

the Supported field is not needed in each event for user defined protocols, and

can be omitted.

The Param fields of the event have four purposes:

 Qualify the data, making sure it conforms to the requested type

 Translate the actual data the user entered into a particular format in the

compiler's temporary buffer.

 Describe an error message to display if the data does not qualify correctly

 Describe the correct parameter to enter in the field (used by Event Wizard)

param1=port, "A valid Port"

param2=framestring, "A valid Frame number"

In this case, the first parameter must be a valid port name. The compiler looks

up the text put into the first parameter and verifies that there is a valid port with

that name in the Configuration | Ports window. If there is no port with that

name, the compiler will display the error following the qualifier. If there is, the

compiler will stuff one byte into the compiler's temporary buffer—which will be

the index of the port in question. The second parameter must be a valid frame

number-- the compiler confirms that the text entered is all digits, and less than

the maximum number of frames. If it is, it stuffs the frame number in ASCII

into the compiler's temporary buffer. If it isn't, the error message will be

displayed.

15-6 Appendix A – Adding User-Defined Serial Protocols

Note WinScript does not require parameters to be in specific column numbers,

as long as multiple parameters are placed in order. If the event requires two

parameters for example, the data can be put into column 2 and 4 (leaving 1 and

3 blank) as long as the data in column 1 matches the first parameter, and

column 4 matches the second parameter.

Param fields are important because of the fact that they perform an operation

as well as qualify the data. They take the data the user enters and puts it in a

format the message field can take and perform another operation on. The

combination of the param and message field processes are what make the

serial messages come out correctly.

Here are the possible param field choices: input, output, flag, var, port,

datastring, lcdstring, string, seq, byte, word, bytelabel, bytetime, framestring,

timestring, trackstring, and contains. In all cases, if the compiler does not

qualify the data, then the corresponding message is displayed if it exists. If the

compiler does qualify the data, the compiler performs different operations on the

parameter, depending on what the param field is. The following is a

description of each of the following param types:

 input – Must match the name of an input in the Configuration | Inputs

window. Puts one byte in the compiler buffer which is the index of that

input.

 output – Must match the name of an output in the Configuration | Outputs

window. Puts one byte in the compiler buffer which is the index of that

output.

 flag – Must match the name of a flag in the Configuration | Flags window.

Puts one byte in the compiler buffer which is the index of that flag.

 var – Must match the name of a variable in the Configuration | Variables

window. Puts one byte in the compiler buffer which is the index of that

variable.

 port – Must match the name of a port in the Configuration | Ports window.

Puts one byte in the compiler buffer which is the index of that port.

 sequence – Must match the name of a sequence in the Sequence List

window. Puts one byte in the compiler buffer which is the index of that

sequence.

 remoteinput – Must match the name of an input in the Configuration |

Inputs window of the remote script connected to a porttyperemote as

param1. Puts one byte in the compiler buffer which is the index of that

input.

 remoteoutput – Must match the name of an output in the Configuration |

Outputs window of the remote script connected to a porttyperemote as

param1. Puts one byte in the compiler buffer which is the index of that

output.

15-7 Appendix A – Adding User-Defined Serial Protocols

A
p

p
e
n

d
ic

e
s

A

 remoteflag – Must match the name of a flag in the in the Configuration |

Flags window of the remote script connected to a porttyperemote as

param1. Puts one byte in the compiler buffer which is the index of that flag.

 remotevar – Must match the name of a variable in the Configuration |

Variables window of the remote script connected to a porttyperemote as

param1. Puts one byte in the compiler buffer which is the index of that

variable.

 remoteport – Must match the name of a port in the Configuration | Ports

window of the remote script connected to a porttyperemote as param1. Puts

one byte in the compiler buffer which is the index of that port.

 remotesequence – Must match the name of a sequence in the Sequence

List window of the remote script connected to a porttyperemote as param1.

Puts one byte in the compiler buffer which is the index of that sequence.

 porttyperemote – Must be a valid local Alcorn 9 Bit Control port with a

valid Script attached to it.

 bytelabel – Must match the name of a label in the Events window, and fit

into a single byte. The label must be less than 128 events away from the

current event. Puts one byte in the compiler buffer which is the offset in

bytes to that label.

 bytetime – Must be a valid time that fits into one byte. Any time (

whether entered in absolute frames FFF, or time SS.FF) is acceptable, up to

255 frames. The maximum time varies depending on the frame rate

selected in the Show Controller. For example, with a running frame rate of

30fps, the maximum time is 8 seconds, 15 frames. Puts one byte in the

compiler buffer which is the number of frames specified.

 byte – Must be a valid number between 0 and 255 inclusive. The number

can be entered in decimal, hexadecimal, or percentage. For example, the

number 128 could be entered as 128 for decimal, 0x80, h80, or 80h for

hexadecimal, or 50% for percentage. Puts one byte in the compiler buffer

which is the number entered.

Note The param byte may have an optional argument which is a tighter

specification on the number. For example, paramX=byte(15,32) would

require the number entered to be larger than 14 and smaller than 33 to be valid.

 word– Must be a valid number between 0 and 65535 inclusive. The

number can be entered in decimal, hexadecimal, or percentage. For

example, the number 49152 could be entered as 49152 for decimal,

0xC000, hC000, or EC000h for hexadecimal, or 75% for percentage.

Puts two bytes in the compiler buffer which is the number entered.

Note As in byte, the param word may have an optional argument which is a

tighter specification on the number.

 string – Accepts any correctly formatted string. The string can consist of

any combination of decimal, hex, or percentage numbers, and text data. For

15-8 Appendix A – Adding User-Defined Serial Protocols

example, the string "HELLO" 0xAA 50 0 "GOODBYE" h2E is perfectly

valid. The compiler changes all the characters in quotes into ASCII bytes,

and puts the entire string into the compiler buffer.

 “literal” – Accepts a string which is exactly what is specified, non-case

sensitive. For example, if the user entered "bAnK1" for the parameter, and

the param field is ParamX="bank1" the parameter will validate. The

compiler changes all the characters in quotes into ASCII bytes, and puts the

entire string into the compiler buffer.

 datastring – Must match the name of a data string in the Configuration |
Data Strings window. The data string must conform to the same

restrictions as string. Puts the entire string into the compiler buffer.

 lcdstring – Must match the name of an LCD string in the Configuration
| LCD Strings window. The LCD string must conform to the same

restrictions as string. Puts the entire string into the compiler buffer.

 framestring – Must be a number between 0 and 999999 inclusive. Puts

the entire string into the compiler buffer.

 timestring – Must be a valid time in the form HH:MM:SS.FF. HH must

be a number between 0 and 23 inclusive. MM must be a number between 0

and 59 inclusive. SS must be a number between 0 and 59 inclusive. FF

must be a number between 0 and 29 inclusive. Puts the entire string without

the colons or period into the compiler buffer. If the hour, minute, second,

or frame values are less than 10, a leading zero is put into the message for

that byte. For example, a time of 2:04:16.09 would get put into the buffer

as 02041609.

 trackstring – Must be a valid track and index in the form TT-II. TT must

be a number between 0 and 99 inclusive, and II must be a number between

0 and 99 inclusive. Puts the entire string without the hyphen into the

compiler buffer. If the track or index values are less than 10, a leading zero

is put into the message for that byte. For example, a track index of 1-3

would get put into the buffer as 0103.

 contains – This param has a required argument which is the byte that the

text must contain to be valid. For example, paramX=contains(Q) means

that the parameter must contain the letter 'Q' (not case sensitive) in order to

be valid. The compiler removes the argument from the parameter, and puts

the entire string without it into the compiler buffer. For example, the

parameter equipment would result in the string equipment being put into the

compiler buffer.

The contains param has an optional argument, which is designed to replace the

found byte. The required argument and optional argument are separated by a

colon.

ParamX=contains(Q:h41)

In this example, the parameter is validated if a 'Q' was found in the parameter.

If it was, the compiler removes the 'Q', but since the optional argument is in

15-9 Appendix A – Adding User-Defined Serial Protocols

A
p

p
e
n

d
ic

e
s

A

place, instead of just removing the 'Q', the compiler replaces it with the optional

byte h41 ("A"). For example, the parameter equipment would result in the

string equipment being put into the compiler buffer.

Since validation of a parameter is key to compiling what is truly desired, several

different types of validation can be performed on a parameter. To facilitate this,

allowing different types of data to validate is possible using the OR operator |,

and forcing multiple validations on the same data is possible using the AND

operator &.

This is an example of the OR operator. In this case, if either an output or a flag

was found as parameter 1 the validation for this event passes:

param1=output|flag,"A valid Output or Flag was not found as parameter 1"

Whichever type of validation succeeds, that is the validation type that is used to

process the parameter, and to put the data into the compilers buffer. If multiple

validations would pass, the first one to pass is the one that's used.

This is an example of the AND operator. If both validations pass, the validation

for the overall event passes. Both validation processes are performed, in order,

from left to right. In this case, the parameter must contain the letter 'R" and the

data that remains after the letter "R" is removed must be a byte in size, no

smaller than 1 and no larger than 16.

param2=contains(r) & byte(1,16), "No valid reproducer card

 number was found as parameter 2"

OR and AND operators can be combined. There can be up to 5 OR operators.

For each OR operator, there can be up to 3 AND operators. The following is a

generic example:

paramX= validationA1 & validationA2 & validationA3 |

 validationB1 & validateionB2 & validationB3 |

 validationC1 & validationC2 & validationC3, "error message"

The first OR operator that passes validation is used. In order for OR validation

B to pass, validationB1, validationB2, and validationB3 all have to pass, and

remember that validationB1 uses the actual parameter as data, validationB2 uses

the result of validationB1 as data, and validationB3 uses the result of

validationB2 as data. The result, what is put into the compiler buffer, would be

the result of validationB3.

The Message field specifies what bytes are sent out the port for this event.

The message can range from very easy to very complex. Our PlayUntil event

has a very simple message field, but still illustrates two of the three different

concepts that can help make up the message field. Possible types of data that

can be put into a message field are literal data, parameters, and functions.

Literal data are bytes that are specified in the message field directly, and can be

a decimal number, hexadecimal number, or string.

15-10 Appendix A – Adding User-Defined Serial Protocols

Here are four different ways of representing the same three literal bytes:

Type Representation

String "ABC"

Decimal 65 66 67

Hex h41 h42 h43

Combination "A" h42 67

The bolded text below is literal data:

message=h02 "OPL:F" @string(param2) h03

Parameters specify a parameter to be directly entered into the message. the

bolded text below is parameter data:

message=h00 h02 param1

Parameters take the first byte out of the compiler buffer and put it into the

message. The following bolded text uses a byte function to exactly duplicate the

functionality of a parameter:

message=h00 h02 @byte(param1)

Functions allow many different operations which allow data to be put into the

message. Typically these functions take data from what the user entered and

convert it into a usable format for the message.

The bolded text below is function data

message=h02 "OPL:F" @string(param2) h03

Functions

All functions begin with an @ sign, and have parenthesis around their

arguments. Functions can have multiple arguments, separated by commas, but

typically only have one. In this case this function takes whatever data is in the

compilers temporary buffer, and puts it into the message, regardless of it's

length, and does not convert it whatsoever.

It is important to realize that param fields take whatever the user entered,

qualify it, and then place it into the compilers buffer in a pre-parsed format.

Functions take that pre-parsed and convert it into a useful format in the actual

message. The combination of these two processes is what allows a message

field to work. For example, a timestring param field takes a valid time in the

15-11 Appendix A – Adding User-Defined Serial Protocols

A
p

p
e
n

d
ic

e
s

A

format HH:MM:SS.FF, and converts it to the format HHMMSSFF when

putting it into the compiler buffer. The function @string takes whatever is in

the buffer and puts it into the message to be sent out. This technique

successfully works for several DVD players. If an @byte function was used by

mistake, only the tens place of the hours of the time HH would get put into the

message.

Here are all of the possible function types, and their descriptions.

 @byte – Takes the first byte of the compiler buffer and puts it into the

message.

 @word – Takes the first two bytes of the compiler buffer and puts them

into the message.

 @length – Takes the length (how many bytes there are) in the compiler

buffer and puts the byte into the message.

 @string – Takes however many bytes there are in the compiler buffer and

puts them all into the message.

 @decstring – Takes the first two bytes of the compiler buffer (a word)

and puts them in the message as three decimal ASCII bytes. If the number

is less than three digits in size, the message has leading zeros.

For example, if the two bytes in the buffer are h9D h03, which yield the word

h039D, which is the number 925 in decimal, @decstring will put "925" (or in

hex h39 h32 h35) in the message.

If the two bytes in the buffer are h62 h00 (the word h0062), which is 98 in

decimal, "098" (or h30 h39 h38) will be put in the buffer.

 @hextring – Takes the first two bytes of the compiler buffer (a word)

and puts them in the message as two hexadecimal ASCII bytes. If the

number is less than two digits in size, the message has leading zeros.

For example, if the two bytes in the buffer are hFA h00, which yield the word

h00FA, which is the number FA in hex, @hexstring will put "FA" (or in hex

h46 h41) in the message.

If the two bytes in the buffer are h0D h00 (the word h000D), which is 0D in

hex, "0D" (or h30 h0D) will be put in the buffer.

 @index – Takes the first byte of the compiler buffer, subtracts one from it,

and puts it into the message. This provides zero-indexed data to be entered.

In other words, when you want the user to put in a number, say 1 to 10, but

the device you're sending to requires 0 to 9, this function will allow that

without much effort.

 @hour – This function takes the first two bytes of the compiler buffer as

an ASCII representation of one byte (the hour of a time), and puts it in the

message as one byte. This function assumes you had a param field of

timestring, which stores HHMMSSFF in the compiler buffer.

 @minute – This function takes the third and fourth bytes of the compiler

buffer as an ASCII representation of one byte (the minute of a time), and

puts it in the message as one byte. This function assumes you had a param

field of timestring, which stores HHMMSSFF in the compiler buffer.

15-12 Appendix A – Adding User-Defined Serial Protocols

 @second – This function takes the fifth and sixth bytes of the compiler

buffer as an ASCII representation of one byte (the second of a time), and

puts it in the message as one byte. This function assumes you had a param

field of timestring, which stores HHMMSSFF in the compiler buffer.

 @frame – This function takes the seventh and eighth bytes of the compiler

buffer as an ASCII representation of one byte (the frame of a time), and

puts it in the message as one byte. This function assumes you had a param

field of timestring, which stores HHMMSSFF in the compiler buffer.

 @track – This function takes the first two bytes of the compiler buffer as

an ASCII representation of one byte (the track of a track-index), and puts

it in the message as one byte. This function assumes you had a param

field of trackstring, which stores TTII in the compiler buffer.

 @trackindex – This function takes the third and fourth bytes of the

compiler buffer as an ASCII representation of one byte (the index of a

track-index), and puts it in the message as one byte. This function assumes

you had a param field of trackstring, which stores TTII in the compiler

buffer.

 @checksum – This function calculates an eight-bit checksum of all bytes

in the range specified as its parameters (e.g. @checksum(1,5))

 @msg – This function returns the byte designated by the index parameter

(e.g. @msg(1))

 @msgposition – This function returns the current position within the

message.

 @complex – This function allows mathematical operations to be

performed upon the data specified. It is not for the novice user.

Let's abandon our PlayUntil event for a moment, in favor of a event that uses an

@complex function. This event is a Search event for a Denon CD player.

[Search:Time]

description="Search to a Time (MM:SS.FF)"

param1=port, "A valid Port"

param2=timestring, "A valid Time"

byte1=((@minute(param2) / 10) << 4) | (@minute(param2) % 10)

byte2=((@second(param2) / 10) << 4) | (@second(param2) % 10)

byte3=((@frame(param2) / 10) << 4) | (@frame(param2) % 10)

message="C" @complex(byte1) @complex(byte2) @complex(byte3)

retries=1

timeout=60

completionack="A"

Pay close attention to the message field and the previously unexplained byte

field. The byte field is only used when @complex functions are used, and

defines what this byte should be in the message. The argument for an

@complex function is always a reference to a byte field.

Regardless of the complexity of this function, the compiler reduces the

mathematical expression in the byte field specified to one byte, and that one

byte is put into the message as a result of an @complex function.

15-13 Appendix A – Adding User-Defined Serial Protocols

A
p

p
e
n

d
ic

e
s

A

The Byte field specifies how the byte will be created. There can be up to 20

byte fields. Literal decimal and hex values can be used, as well as functions

that result in a byte or word. The @complex function can not be used.

Currently, 11 operators can be used on the data. They are the following:

Operator Function

+ Add

- Subtract

* Multiply

/ Divide

% Mod (returns remainder from division)

>> Shift Right

<< Shift Left

& Bitwise AND

| Bitwise OR

~ Bitwise NOT

Note Unlike C language or other ways of expressing mathematical algorithms,

there is no operator precedence. Operations are performed from left to right. If

you wish to specify what operand an operator is to work on, use parenthesis to

group the operand.

Let's look at our complex Search:Time event as an example. Here is the

pertinent information:

param2=timestring, "A valid Time"

byte1=((@minute(param2) / 10) << 4) | (@minute(param2) % 10)

byte2=((@second(param2) / 10) << 4) | (@second(param2) % 10)

byte3=((@frame(param2) / 10) << 4) | (@frame(param2) % 10)

message="C" @complex(byte1) @complex(byte2) @complex(byte3)

The Search to a Time event for a Denon player sends the ASCII byte "C"

followed by a BCD (binary coded decimal) representation of the minute, then

the second, then the frame to be searched to.

First, the timestring param field takes what the user entered (let's say

23:12.15), and puts 00231215 in the compiler buffer. The message field

directly puts a "C" (h43) into the message, followed by three bytes which are

defined by byte1, byte2, and byte3.

Byte1 takes the third and fourth byte of the compiler buffer, retrieves the

number 23, and puts that into one byte. It then divides that number by 10 and

gets 2. It then shifts left four bits and gets 32 (h20). It then takes that same

minute byte 23, and divides by 10, saving the remainder, not the quotient, which

15-14 Appendix A – Adding User-Defined Serial Protocols

is 3. It then ORs the two results together h20 and h03, to get h23, which is the

binary coded decimal equivalent of 23 decimal.

Byte2 and Byte3 work similarly, except they work on the fifth and sixth bytes,

and the seventh and eighth bytes respectively.

Note The compiler uses a word size for the result of each operation, and then

finally put the LSB byte into the message as the final result. This is to help

produce accurate answers in intermediate stages of math operations.

Byte fields allow for 128 operands and 32 total sets of parenthesis. Not thirty-

two levels deep, but thirty-two total sets.

retries=1

timeout=60

completionack="A"

The Retries field allows for how many times a message will be sent out if the

correct acknowledgment is not received back, specified by the Messageack

and Completionack fields. If the Show Controller receives nothing, or the

incorrect response for a given event, then the Show Controller will try to send

the message again. For example, if retries is 1, the Show Controller will try

one more time to send the event. If the correct response is not received the

second time, the Sequence specified in Configuration | Ports for an Error

Sequence is executed, and the Show Controller does not attempt the event again.

The range for the retries field is 0 to 255. If retries is not specified, the Show

Controller assumes 0 retries, and will start the Error Sequence after the timeout
period after the message is sent out the first time.

The Timeout field specifies how long the Show Controller is to wait for an

acknowledge for a message sent out. It is specified in frames. For example, if

timeout is set to 60, the Show Controller will send out the message, and then

wait 60 frames before assuming that there was no response. The timeout
should be long enough to allow for both the messageack and the

completionack data to come back in a worst case (longest) scenario, is a

normally operating device. The range for the timeout field is 0 to 65535. If

timeout is not specified, the Show Controller assumes 0 timeout, and will

retry or start the Error Sequence immediately after the message is sent out,

without waiting for a response.

The Messageack field specifies what the device should send back to the Show

Controller immediately after receiving the message. This is used to say "Yes I

received what you just sent, and I understood it". Messageack is defined

exactly as the message field, and can use functions, including @complex. If

the messageack field is not specified, the Show Controller assumes there is

no response immediately after the message is sent.

The Completionack field specifies what the device should send back to the

Show Controller when it is finished executing the event it just received. This is

used to say "Ok, the event you requested is completed". Completionack is

defined exactly as the message field, and can use functions, including

15-15 Appendix A – Adding User-Defined Serial Protocols

A
p

p
e
n

d
ic

e
s

A

@complex. If the completionack field is not specified, the Show Controller

assumes there is no response after the event is completed.

If the messageack and completionack fields are both not specified, the

Show Controller assumes there is no response whatsoever from the device, and

it ignores both the retries and timeout fields. The message is simply sent out,

and that's it.

Multiple Variations of the Same Event

In many cases the same operation could take several different arguments. For

example, the Search event often has multiple variations, because many devices

support multiple ways of searching. On most DVDs, you can search to a

specific time or a specific frame number. Rather than make two different events,

like SearchTime and SearchFrame, it makes more sense to overlap the two

events. The following two events are an example of this:

[Search:Frame]

param1=port, "A valid Port"

param2=framestring, "A valid Frame number"

message="FR" @string(param2) "SE" h0d

retries=1

timeout=120

completionack="R" h0d

[Search:Time]

param1=port, "A valid Port"

param2=timestring, "A valid Time"

message="TM" @string(param2) "SE" h0d

retries=1

timeout=120

completionack="R" h0d

The compiler will attempt to compiler all variations of the same event before

giving an error. The first event that successfully validates all parameters is used.

Using the above two events, if a user enters a frame number as the second

parameter, the first event validates, and compilation continues. If the user enters

a time as the second parameter, the first event does not validate, but the second

one does, so compilation continues. If the user enters the Date as parameter 2,

both events do not validate, and compilation fails on this event.

Multiple variations can also be used when a event has optional parameters.

[Play:UntilFrame]

param1=port, "A valid Port"

param2=framestring, "A valid Frame number"

message="FR" @string(param2) "PL" h0D

retries=1

timeout=65534

completionack="R" h0d

15-16 Appendix A – Adding User-Defined Serial Protocols

[Play:Continuous]

param1=port, "A valid Port"

message="PL" h0d

retries=1

timeout=60

completionack="R" h0d

In this case, the Play event has an optional parameter, which is the frame to stop

at when reached. If the user enters a frame number as parameter 2, the first

event is compiled. If the user enters nothing as parameter 2, or something that is

not a frame number, the second event will compile, yielding a play forever. If it

is important that the parameter is empty, and not that the user entered invalid

information, this parameter validation could be used in the second event.

param2="", "The PlayContinuous event does not have a parameter 2"

This validation compares what the user entered to an empty string. This forces

the user to leave parameter 2 blank in order to compile.

The important thing to remember with multiple variations of the same event is

that the compiler chooses the first event to pass validation, so you should choose

which variation goes before which variation. In the Play event variations

above, it would not work for the Play:Continuous variation to come first.

This variation would always be chosen, even if the user entered a valid frame

number in parameter 2. This would not be the case if the comparison to an

empty string validation was put into the Play:Continuous variation, but you

should always be careful of the ordering regardless.

Using Variables in your protocol messages

If your show controller has the latest firmware installed you have the ability to

include variable values in your serial messages. Here are some good examples

that show how to implement this feature for a DVM:

[SelectClip:ByNumber]

description=Stops playback and preloads new clip

supported=5.00

retries=1

timeout=60

completionack="R" h0d

param1=port, "A valid Port"

param2=framestring, "A valid clip number (1-99999)"

message=@string(param2) "SE" h0d

[SelectClip:ByVariable]

description=Stops playback and preloads new clip using a variable

supported=6.40

retries=1

timeout=60

completionack="R" h0d

15-17 Appendix A – Adding User-Defined Serial Protocols

A
p

p
e
n

d
ic

e
s

A

param1=port, "A valid Port"

param2=var, "A valid variable representing a clip number"

byte1=(@byte(param2) + 1)

message=hF3 @complex(Byte1) "SE" h0d

First you must make sure that the "Supported" field is set to 6.40. WinScript

uses this information to determine whether variables can be sent, and then

compiles the command accordingly. As you can see, the message field in the

Variable version contains an hF3 and a @complex function. The hF3 signifies

that an ASCII representation will be transmitted. There are other modifiers like

hF3 and you can learn how they function in the Built-In Serial Events section.

The @complex function is required since the variable is zero-indexed (starts at 0

rather than 1). Since the show controller expecting a number that is not zero-

indexed, 1 must be added in the previous byte command. Overall, the

[SelectClip:ByVariable] command sends out the same basic result as

[SelectClip:ByNumber], only that data does not have to be hard-coded into your

script. As you can see, this is a very powerful feature as it gives you more

flexibility in your scripts.

0570.htm

15-18 Appendix A – Adding User-Defined Serial Protocols

16-1 Appendix B – Alcorn McBride Serial Control Protocols

A
p

p
e
n

d
ic

e
s

B

Appendix B – Alcorn McBride Serial
Control Protocols

Any device can serially control an Alcorn McBride Show Controller by using

one of three protocols: Alcorn 9 Bit Control, Alcorn 8 Bit Control, or MIDI.

PCs and other Show Controllers that can support Mark or Space parity over an

RS-232 serial connection can use either Alcorn 8 or 9 Bit Control. Other

devices, such as MIDI based show systems, can use the MIDI protocol.

There are several pluses and minuses to each protocol, but each provides great

flexibility by allowing sequence starts, output activation, and more.

In this section you will find:

 Examples of Start Sequence and On/Off Output messages in any of the

three supported Show Control Protocols.

 A complete AMI Protocol reference

16-2 Appendix B – Alcorn McBride Serial Control Protocols

The Basics of Alcorn Control
Alcorn Control protocols use a very basic message structure consisting of

several similar components: source address, target address, command byte, and

data bytes.

Note This appendix uses the prefix 0x to indicate a hexadecimal number.

Source and Target Address

The Source and Target addresses are derived from the Show Controller’s “Unit

Address” which is a one byte address from 0x00 – 0x79. The source address is

the address of the unit where the message originated. The target address is the

address of the unit that should receive and process the message.

Note The source address of an external device, such as a PC, that is controlling

a Show Controller or group of Show Controllers should be 0xFF.

Command and Data Bytes

A “command opcode” is a term used by programmers to describe a single byte

in a serial message that stands for what is to be done. Alcorn Control messages

can turn on and off Outputs and Flags, start Sequences change Variables, and

even remotely display messages on the LCD Display. Each of these functions

requires a different command.

Some command opcodes require additional “data” bytes that further describe

what is to be done in the Show Controller. These data bytes can take the form of

an Output, Flag, Sequence, Port, or State Variable index; DMX or Analog

values; or a message to display on the LCD or send out a Serial Port. The

following table lists the indices of Show Controller resources:

Resource Index

Output 0x00 – 0x3F

Flag 0x40 – 0x7F

State Variable 0x00 – 0x1F

Serial Port 0x00 – 0x11

Sequence 0x00 – 0xFF

Output or Flag Bank 0x00 – 0x01

Note All resource indices in a Show Controller are zero-based.

16-3 Appendix B – Alcorn McBride Serial Control Protocols

A
p

p
e
n

d
ic

e
s

B

The following table lists all Alcorn Control command opcodes (and

corresponding data bytes) that can be used to control resources in an Alcorn

McBride Show Controller.

Note For a full description of each command, see Chapter 6.

Command Op-
code

Data Byte 1 Data Byte 2 Data Byte 3 Data Byte 4

Nop 0x01 N/A N/A N/A N/A

On 0x02 <output or flag

index>

N/A N/A N/A

Off 0x03 <output or flag

index>

N/A N/A N/A

Blink 0x04 <output index> <blink period>** N/A N/A

Pulse 0x05 <output index> <pulse duration>** N/A N/A

Toggle 0x06 <output or flag

index>

N/A N/A N/A

AnalogSet 0x07 <analog channel> <value to attain> N/A N/A

DMXSet

(1-256)

0x07 <DMX channel> <value to attain> N/A N/A

DMXRamp

(1-256)

0x08 <DMX channel> <value to attain> <ramp duration,

low byte>***

<ramp duration,

high byte>***

DMXRamp

(1-256)

0x09 <DMX channel> <value to attain> <ramp duration>** N/A

AnalogRamp 0x09 <analog channel> <value to attain> <ramp duration>** N/A

Display 0x0C <message length>* <bytes 1..n to display> N/A N/A

MessageOut 0x0D <serial port index> <message length> <bytes 1..n of message> N/A

SendVar 0x13 <serial port index> <var index> N/A N/A

SendVarEx 0x14 <serial port index> <var index> <formatting>**** N/A

PutVar 0x15 <remote unit
address>

<remote var index> <local var index> N/A

Start 0x18 <sequence index> N/A N/A N/A

Stop 0x19 <sequence index> N/A N/A N/A

Pause 0x1A <sequence index> N/A N/A N/A

Reset 0x1B <sequence index> N/A N/A N/A

ShowFlags 0x1C <flag bank index> N/A N/A N/A

DMXSet

(257-512)

0x1D <DMX channel> <value to attain> N/A N/A

DMXRamp

(257-512)

0x1E <DMX channel> <value to attain> <ramp duration,
low byte>***

<ramp duration,
high byte>***

16-4 Appendix B – Alcorn McBride Serial Control Protocols

Command Op-
code

Data Byte 1 Data Byte 2 Data Byte 3 Data Byte 4

DMXRamp

(257-512)

0x1F <DMX channel> <value to attain> <ramp duration>** N/A

Outport 0x20 <output bank index> <value to attain> N/A N/A

SetVarEQ 0x28 <variable index> <value> N/A N/A

AddVar 0x2F <variable index> <value> N/A N/A

SubVar 0x30 <variable index> <value> N/A N/A

SetVarEQ 0x31 <variable index> <variable index> N/A N/A

AddVar 0x38 <variable index> <variable index> N/A N/A

SubVar 0x39 <variable index> <variable index> N/A N/A

ShowVar 0x3A <variable index> N/A N/A N/A

SendVersion 0x42 N/A N/A N/A N/A

DMXSet

(1-256)

0x51 <variable index,

for channel>

<variable index,

for value to attain>

N/A N/A

DMXSet

(257-512)

0x52 <variable index,

for channel>

<variable index,

for value to attain>

N/A N/A

DMXRamp

(1-256)

0x53 <variable index,

for channel>

<variable index,

for value to attain>

<variable index,

for ramp duration>

N/A

DMXRamp

(257-512)

0x54 <variable index,

for channel>

<variable index,

for value to attain>

<variable index,

for ramp duration>

N/A

DMXRamp

(1-256)

0x55 <variable index,

for channel>

<variable index,

for value to attain>

<ramp duration,

low byte>***

<ramp duration,

high byte>***

DMXRamp

(257-512)

0x56 <variable index,
for channel>

<variable index,
for value to attain>

<ramp duration,
low byte>***

<ramp duration,
high byte>***

DMXRampSec

(1-256)

0x57 <variable index,

for channel>

<variable index,

for value to attain>

< variable index, for

ramp duration in seconds

N/A

DMXRampSec

(257-512)

0x58 <variable index,

for channel>

<variable index,

for value to attain>

< variable index, for

ramp duration in seconds

N/A

DMXSet

(1-256)

0x59 <DMX channel> <variable index,
for value to attain>

N/A N/A

DMXSet

(257-512)

0x5A <DMX channel> <variable index,

for value to attain>

N/A N/A

DMXRamp

(1-256)

0x5B <DMX channel> <variable index,

for value to attain>

<variable index, for

ramp duration>

N/A

DMXRamp

(257-512)

0x5C <DMX channel> <variable index,

for value to attain>

<variable index,

for ramp duration>

N/A

DMXRamp

(1-256)

0x5D <DMX channel> <variable index,

for value to attain>

<ramp duration,

low byte>***

<ramp duration,

high byte>***

16-5 Appendix B – Alcorn McBride Serial Control Protocols

A
p

p
e
n

d
ic

e
s

B

Command Op-
code

Data Byte 1 Data Byte 2 Data Byte 3 Data Byte 4

DMXRamp

(257-512)

0x5E <DMX channel> <variable index,

for value to attain>

<ramp duration,

low byte>***

<ramp duration,

high byte>***

DMXRampSec

(1-256)

0x5F <DMX channel> <variable index,

for value to attain>

< variable index,

for ramp duration,
in seconds

N/A

DMXRampSec

(257-512)

0x61 <DMX channel> <variable index,
for value to attain>

< variable index,

for ramp duration,

in seconds

N/A

* In Bytes (0x00-0xFF)

** In Frames (0x00-0xFF)

*** In Frames (0x0000-0xFFFF)

**** Byte takes the following form:

Bits Definition

7 and 6 Not Used

5, 4, and 3 Text Formatting Code:

000 – Send only significant characters (“7”)

001 – Send leading zeros (“007”)

010 – Send leading spaces (“ 7”)

011 – Send trailing spaces (“7 ”)

2, 1, and 0 Numerical Type Code:

000 – ASCII Decimal (“000” thru “255”)

001 – ASCII Hexadecimal (“00” thru “FF”)

010 – ASCII Octal (“000 thru “377”)

011 – Straight binary

Alcorn 9 Bit Control
Advantage: Bullet-proof messaging

Disadvantage: Difficult to program

Resources: C++ Programming Library available free to developers.

Alcorn 9 Bit Control uses Mark and Space parity bits to create a start of message

and end of message delimiter. When Mark parity is used, we say that the byte

has its ninth bit set. When Space parity is used, we say that the byte does not

have its ninth bit set.

Note An asterisk (*) indicates that a byte has its ninth bit set (Mark Parity), and

two asterisks (**) indicate that a byte has both the eighth and ninth bits set.

16-6 Appendix B – Alcorn McBride Serial Control Protocols

The Show Controller sends a response byte of 0xAA to indicate that it received

a valid command or 0x55 to indicate that it received an invalid command.

Here is the general form of an Alcorn 9 Bit Control message:

<source address>** <target address> <command opcode> <data bytes 1..n> <checksum>*

The <checksum> byte is the 8-bit sum of all previous bytes in the message

shifted right once. For example, if the sum of all bytes in the message is 0x5D

(or 01011101 in binary), shifting it right once will produce 0x2E (or 00101110

in binary). This byte is used for error detection and will cause the entire

message to be ignored if it is incorrect.

Here is an example Start Sequence #2 message sent from a PC (address 0xFF) to

a Show Controller whose address is 0x00:

0xFF* 0x00 0x18 0x01 0x0C*

Alcorn 8 Bit Control
Advantage: Easy to program

Disadvantage: Not bullet-proof

Resources: C++ Programming Library available free to developers.

Alcorn 8 Bit Control uses the byte 0xF5 as a start of message delimiter. There is

no Mark or Space parity and any byte could have bit eight set high or low.

Here is the general form of an Alcorn 8 Bit Control message:

0xF5 <target address> <response> <length> <command opcode> <data bytes 1..n> <checksum>

The <response> byte tells the Show Controller what kind of response to send

back to the originating device. The response byte can take the following forms:

 0x00 – Send no response back to the sender.

 0x01 – Send a 0xAA (ACK) or 0x55 (NACK).

 0x02 – Send the entire message back to the sender followed by an ACK or

NACK.

The <length> byte tells the Show Controller how many command and data

bytes are in the message.

The <checksum> byte is the 8-bit sum of all previous bytes in the message

(except the 0xF5).

Here is an example Start Sequence #2 message (no response) sent from a PC

(address 0xFF) to a Show Controller whose address is 0x00:

0xF5 0x00 0x00 0x02 0x18 0x01 0x1B

Note: Alcorn 8-bit control cannot be operated at a baud rate greater than 19,200

baud.

16-7 Appendix B – Alcorn McBride Serial Control Protocols

A
p

p
e
n

d
ic

e
s

B

MIDI Control
Advantage: Supported by most MIDI devices

Disadvantage: Not bullet-proof

Alcorn McBride Show Controllers with a MIDI IN port can also be controlled

by the MIDI Control messages SYSEX, NOTE ON, and NOTE OFF.

Start a Sequence with SYSEX “GO CUE”

The SYSEX “GO CUE” message can be used to start a sequence. Here is the

general form:

0xF0 0x7F <target address> 0x02 0x7F 0x01 <data #1> <data #2> <data #3> 0xF7

The <data #1> byte is the ASCII hundreds digit of the sequence number

(sequence index + 1). For example, if you were starting sequence #104, the

<data #1> byte is 0x31 (or “1”).

The <data #2> byte is the ASCII tens digit of the sequence number (sequence

index + 1). For example, if you were starting sequence #104, the <data #2>

byte is 0x30 (or “0”).

The <data #3> byte is the ASCII ones digit of the sequence number (sequence

index + 1). For example, if you were starting sequence #104, the <data #3>

byte is 0x34 (or “4”).

Here is an example Start Sequence #4 message sent from an Amiga (address

0xFF) to a Show Controller whose address is 0x00:

0xF0 0x7F 0x00 0x02 0x7F 0x01 0x30 0x30 0x34 0xF7

Set a State Variable with SYSEX “SET”

The SYSEX “SET” message can be used to set the value of a State Variable.

Here is the general form:

0xF0 0x7F <target address> 0x02 0x7F 0x06 <data #1> 0x00 <data #2> <data #3> 0xF7

The <data #1> byte is the state variable index number. For example, if you

were setting variable #3, the <data #1> byte would be 0x03.

The <data #2> byte represents bits 0-6 of the desired value. For example, if the

desired value were 0x8E, <data #2> would be 0x0E.

The <data #3> byte represents the MSB (or bit 7) of the desired value. For

example, if the desired value were 0x8E, <data #3> would be 0x01.

Here is an example “Set Var #3 to 8E” message sent from an Amiga (address

0xFF) to a Show Controller whose address is 0x00:

0xF0 0x7F 0x00 0x02 0x7F 0x06 0x03 0x00 0x0E 0x01 0xF7

16-8 Appendix B – Alcorn McBride Serial Control Protocols

Turn on an Output with NOTE ON

The NOTE ON message can be used to turn on an output:

<target address + 0x90> <output index + 0x3C> 0x40

Here is an example “On Output #1” message sent from an Amiga (address

0xFF) to a Show Controller whose address is 0x00:

0x90 0x3C 0x40

Turn off an Output with NOTE OFF

The NOTE OFF message can be used to turn off an output:

<target address + 0x80> <output index + 0x3C> 0x40

Here is an example “Off Output #5” message sent from an Amiga (address

0xFF) to a Show Controller whose address is 0x00:

0x80 0x3C 0x40

17-1 Appendix C – Cable Reference

A
p

p
e
n

d
ic

e
s

C

Appendix C – Cable Reference

Common Show Control Cable Pinouts
This appendix gives the pinouts for many common show control cables. You

can make these cables yourself, or you may purchase them from Alcorn

McBride by contacting our Sales Department at (407) 296-5800.

 Programming Cable

DB9F #1 Pin DB9F #2 Pin

2 2

3 3

5 (shield) 5 (shield)

Also used to connect a master controller’s serial port to a slave’s programming port.

 Show Control I/O Expansion (Null Modem)

DB9F #1 Pin DB9F #2 Pin

2 3

3 2

5 (shield) 5 (shield)

Used to interconnect two serial ports.

Appendix D – Available Accessories 18-1

A
p

p
e
n

d
ic

e
s

D

Appendix D – Available Accessories

Components
The following table lists commonly used Alcorn McBride Show Controller

accessories, their manufacturers’ part numbers, and our stock number. All parts

are available from Alcorn McBride by next day FedEx shipment.

Part Description Mfg Part No. Stock No.

DB37 Female, Solder Cup Amp 747917-2 642-000166

DB37 Male, Solder Cup Amp 747916-2 642-000151

DB37 Housing Assembly Amp 748676-4 642-000631

DB9 Female, Solder Cup Amp 747905-2 642-000167

DB9 Male, Solder Cup Amp 747904-2 642-000168

DB9 Housing Assembly Amp 748676-1 642-000630

5 Pin DIN (MIDI) Connector, Male Switchcraft 05GM5M 643-000632

BNC (Sync) Connector (RG-59 coax) Amp 413589-2/3 641-000628

1488 RS-232 Driver National DS1488AN 720-000364

1489 RS-232 Receiver National DS1489AN 720-000356

75174 RS-422 Driver TI SN75174N 720-000359

75175 RS-422 Receiver TI SN75175N 720-000360

DIP Resistor, 16 Pin Discrete, 180 Ohm Bourns 4116R-001-181 635-000126

DIP Resistor, 16 Pin Discrete, 1.5K Bourns 4116R-001-152 635-000125

DIP Resistor, 16 Pin Discrete, 10K Bourns 4116R-001-103 635-000625

SIP Resistor, 10 Pin Discrete, 220 Ohm Bourns 4610X-002-221 634-000624

EEPROM, Show Memory, 32K Atmel AT28C256-20PC 731-000374

Alcorn McBride Field Kit 1

An assortment of the above, plus spare

screws, labels, markers, and a
screwdriver, all in a carrying case.

Alcorn 230-100435

18-2 Appendix D – Available Accessories

Manufactured Cables
The following table lists commonly used Alcorn McBride Show Controller

cables. All cables are available from Alcorn McBride by next day Fedex

shipment.

Part Description Stock Number

Cable, DB9F/DB9F, Program, 10 foot 699-000288

Cable, DB9F/DB9F, Program, 25 foot 699-000294

Cable, DB9F/DB9F, Null Modem, 2 foot 699-000295

Cable, Pioneer/Panasonic, 10 foot 699-000286

Cable, Pioneer/Panasonic, 25 foot 699-000293

Cable, Sony, 10 foot 699-000287

Cable, Sony, 25 foot 699-000292

Appendix D – Available Accessories 18-3

A
p

p
e
n

d
ic

e
s

D

Third Party Equipment

 Serial Countdown Clocks

Applied Technical Systems manufactures a line of serially-controlled

countdown clocks that are useful for preshows and queue lines.

Applied Technical Systems
Contact: Jim Reccelli
Tel: (800) 444-7161
Fax: (318) 631-7613

 Real Time Clocks

Sometimes it is desirable to trigger a show or activity at a preset time of day.

ESE makes several Real Time Clock modules that may be connected directly to

Alcorn McBride Show Controllers using a serial cable. Their models ES-225

and 194A are a frequently used combination.

ESE
Web: www.ese-web.com
Tel: (310) 322-2136
Fax: (310) 322-8127

Chrontrol makes Real Time Clocks used to automate radio stations using contact

closure outputs.

Chrontrol Corp
Contact: Jim Durham
Tel: (619) 566-5656
Fax: (619) 566-0140

18-4 Appendix D – Available Accessories

Index 1

Index

A
Accessories .. 18-1
Alcorn 8 Bit Control .. 16-1, 16-6
Alcorn 9 Bit Control ...6-16, 6-17, 7-9, 15-7, 16-1, 16-5

B
Buttons

DMX Machine ... 13-5
SMPTE Machine ... 14-7
V16+ ... 8-10

C
Cable Pinouts ... 17-1
cables .. 17-1, 18-2
Chasing Timecode

Dropout Tolerance .. 4-26
Jam Sync Mode .. 4-27
Reset Mode .. 4-27

Communication Options .. 4-41
Compiler Options .. 4-40
Contact Closures

IO64 .. 12-2
SMPTE Machine .. 14-7–14-8
V16+ .. 8-2, 8-6–8-8, 8-10
V2+ .. 10-5–10-6

D
Digital Video Machine ..5-2, 5-29, 5-30, 5-35, 7-1, 7-18, 7-19
dimmer

DMX Machine ... 13-4
diode

IO64 .. 12-9
SMPTE Machine ... 14-11, 14-13
V16+ ... 8-13
V2+ ...10-9, 10-11

DMX 5-2, 5-17, 5-21, 6-23, 16-2, 16-3, 16-4, 16-5
DMX Machine .. 2-4, 12-1

E
EBU 2-4
EEPROM

19-2 Index

Accessories ... 18-1
DMX Machine .. 13-2
IO64 .. 12-2
SMPTE Machine .. 14-2
V16+ ...8-2, 8-16
V2+ .. 10-2

Environment
DMX Machine .. 13-2
IO64 .. 12-2
SMPTE Machine .. 14-2
V16+ ..8-2
V2+ .. 10-2

Event Editing
Copying, Cutting, and Pasting Events .. 4-21
Data Fields .. 4-22
Event Parameters .. 4-24
Event Wizard .. 4-5, 4-22, 4-23, 4-39, 5-35, 15-5
Inserting and Deleting Events .. 4-21
Label... 4-22, 5-11, 7-17, 15-7
Time ... 4-22, 4-38, 15-12, 15-13

Events
AddVar ... 5-7, 5-8, 5-13, 6-12, 6-25, 16-4
Blink .. 4-3, 5-4, 5-5, 16-3
Break ... 5-21
ChasePlay ... 5-27
ClearCue ... 5-28
ControlChange... 5-22
DisableSMPTE .. 4-13, 5-23, 5-24
Display ... 4-8, 5-14, 5-15, 6-4, 6-13, 6-17, 16-3
DMXRamp ... 5-17, 5-21, 6-24, 16-3, 16-4
EnableSMPTE ... 4-13, 5-23, 5-24
External Events.. 5-2, 5-3
FeedThrough ... 5-27
Goto .. 5-2, 5-9, 5-10, 6-4, 6-12, 6-13, 6-14, 6-15, 6-16, 6-17, 6-23
IfOff ...5-2, 5-9, 5-11, 6-4, 6-7, 6-18, 6-23
IfOn ... 5-2, 5-9, 5-11, 5-12, 6-23
IfVarEQ ... 5-2, 5-9, 5-11, 5-12, 5-13, 6-13, 6-15, 6-16
IfVarGE .. 5-2, 5-9, 5-12, 5-13, 6-16
IfVarGT ...5-2, 5-9, 5-12, 6-16
IfVarLE ... 5-2, 5-9, 5-12, 5-13, 6-12, 6-13
IfVarLT ..5-2, 5-9, 5-12, 6-16
IfVarNE ..5-2, 5-9, 5-12
InPort ...5-6
Internal Events ...5-2
MessageOut ... 4-9, 5-17, 5-18, 5-19, 15-4, 16-3
MessageOutVar ... 5-18
Mute .. 5-31, 5-33, 15-4
Nop 4-22, 5-2, 5-9, 5-11, 5-12, 5-13, 6-8, 6-12, 6-13, 6-15, 6-16, 6-17, 6-18, 6-23, 7-15, 16-3
NoteOn .. 5-22
Off ... 5-4, 5-7, 6-16, 6-17, 16-3
On ..5-3, 5-4, 5-7, 6-21, 6-23, 16-3
OutPort .. 5-4, 5-5, 5-6, 16-4
Pause ... 5-9, 5-10, 5-31, 5-32, 6-8, 7-11, 7-17, 16-3
PauseSMPTE ... 5-23, 5-24
PileOn .. 5-27
PileOnAndLoop.. 5-28
Play ... 5-12, 5-13, 5-25, 5-26, 5-29, 5-30, 5-31, 5-32, 6-6, 6-7, 6-9, 6-11, 6-14, 6-19, 15-4
PlayAndLoop ... 5-25, 5-29, 5-30, 5-31, 5-32
PlayUntil ... 15-9, 15-12
Program Control Events ... 5-2, 5-9
ProgramChange .. 5-22
Pulse ..4-3, 5-4, 5-5, 6-18, 6-19, 16-3

Index 3

PutVar ...5-17, 5-20, 16-3
Record .. 5-26
RecoverLCD ..3-22, 5-14, 5-15
Reset ..5-9, 5-10, 5-28, 6-12, 6-13, 16-3
RestoreVar ... 5-8
SaveVar .. 5-8
Search .. 6-5, 6-6, 6-7, 6-9, 6-10, 6-11, 6-14, 6-19, 15-4, 15-12, 15-13, 15-15
SelectClip .. 5-25, 5-29
SelectCue ... 5-25
SelectDrive ... 5-29
SendAsciiDec ..5-17, 5-19, 5-20
SendAsciiHex ..5-17, 5-19, 5-20
SendAsciiOct ... 5-17, 5-19
SendVar ...5-17, 5-20, 16-3
SetSMPTETime ... 4-12, 5-23
SetVarEQ ..5-7, 5-8, 5-13, 6-12, 6-13, 6-25, 16-4
ShowFlags ...5-14, 5-16, 16-3
ShowVar .. 5-11, 5-13, 5-14, 5-16, 5-19, 5-20, 16-4
SMPTE Events ... 5-23
Spindown .. 15-4
Spinup .. 15-4
SPlay ... 5-31, 5-33
SPlayAndLoop ... 5-31, 5-34
Start .. 5-9, 5-10, 6-4, 6-5, 6-6, 6-7, 6-8, 6-9, 6-10, 6-15, 6-21, 6-23, 16-3
Still ... 5-25, 5-28, 5-29, 5-30, 15-4
Still .. 6-3
Stop ..4-19, 5-9, 5-10, 6-11, 6-14, 16-3
StoreLCD ..3-21, 3-22, 5-14, 5-15
SubVar.. 5-7, 5-8, 6-12, 6-13, 16-4
Toggle .. 5-4, 5-7, 16-3
UnMute .. 5-31, 5-33

F
Firmware

DMX Machine ... 13-7
IO64 .. 12-10
SMPTE Machine ... 14-15
V16+ ... 8-16
V2+ ... 10-12

Flags ..3-10, 4-4, 5-7, 5-14, 5-16, 6-7, 15-6, 15-7, 16-2
Front Panel

DMX Machine .. 13-2, 13-5
IO64 .. 12-2
SMPTE Machine .. 14-2, 14-7
V16+ .. 8-2, 8-10
V2+ .. 10-2, 10-5

fuses
IO64 ... 12-2, 12-8
V16+ .. 8-2, 8-11

I
indicator lamp

IO64 .. 12-8
SMPTE Machine ... 14-12
V16+ ... 8-12
V2+ ... 10-10

inductive load
IO64 ... 12-8–12-9
SMPTE Machine ... 14-12–14-13

19-4 Index

V16+ ... 8-12–8-13
V2+ ... 10-10–10-11

Inputs ...3-9, 4-3, 4-4, 6-22, 7-2, 7-3, 7-4, 7-7, 7-12, 7-27, 7-28, 15-6
IO64 2-4, 12-1

L
LCD contrast

SMPTE Machine .. 14-6
V16+ ..8-5
V2+ .. 10-4

LCD Display... 4-6, 5-1, 5-2, 5-14, 5-16, 7-10, 7-15, 7-17, 16-2
SMPTE Machine ... 14-2, 14-6
V16+ .. 8-2, 8-5
V2+ ... 10-2, 10-4

LED
IO64 .. 12-2
SMPTE Machine .. 14-2
V16+ ..8-2
V2+ .. 10-2

M
MIDI 4-3, 4-11, 5-2, 5-22, 8-2, 8-3, 8-5, 8-15, 10-2–10-4, 12-2–12-5, 12-10, 14-2–14-4, 15-3, 16-1, 16-7, 18-1

N
NTSC

SMPTE Machine ... 14-2, 14-14
V16+ ...8-2, 8-14
V2+ .. 10-2

Null Modem ... 17-1
cables .. 18-2

O
Opto Inputs

DMX Machine .. 13-2
IO64 .. 12-2
SMPTE Machine .. 14-2
V16+ ..8-2
V2+ .. 10-2

Outputs .. 4-3, 4-4, 5-4, 5-6, 7-2, 7-3, 7-4, 7-6, 7-8, 7-12, 7-13, 7-28, 15-6, 16-2

P
PAL

SMPTE Machine ... 14-2, 14-14
V16+ ...8-2, 8-14
V2+ .. 10-2

Panasonic
cables .. 18-2

Pioneer
cables .. 18-2

Power
DMX Machine .. 13-2
IO64 .. 12-2
SMPTE Machine .. 14-2
V16+ ..8-2
V2+ .. 10-2

Index 5

Power Supply
DMX Machine ... 13-7
IO64 .. 12-10
SMPTE Machine ... 14-15
V16+ ... 8-15
V2+ ... 10-12

Program Counter .. 6-2
Programmer Port

DMX Machine ... 13-3
IO64 .. 12-3
SMPTE Machine ... 14-3
V16+ ... 8-3
V2+ ... 10-3

Programming Cable .. 17-1
Protocol Files

@byte ... 15-10, 15-11
@checksum .. 15-12
@complex ... 15-12, 15-13, 15-14, 15-15
@decstring ... 15-11
@frame ... 15-12, 15-13
@hextring ... 15-11
@hour ... 15-11
@index ... 15-11
@length .. 15-11
@minute .. 15-11, 15-12, 15-13
@msg ... 15-12
@msgposition ... 15-12
@second .. 15-12, 15-13
@string ... 15-4, 15-10, 15-11, 15-15
@track .. 15-12
@trackindex .. 15-12
@word .. 15-11
Author ... 15-2
BaudRate ... 15-2, 15-3
byte .. 15-6, 15-7, 15-8, 15-9, 15-10, 15-11, 15-12, 15-13, 15-14
bytelabel .. 15-6, 15-7
bytetime ... 15-6, 15-7
Completionack ... 15-4, 15-12, 15-14, 15-15, 15-16
contains ...15-6, 15-8, 15-9
DataBits ... 15-2, 15-3
datastring ...15-4, 15-6, 15-8
flag ...15-6, 15-7, 15-9
framestring ... 15-4, 15-5, 15-6, 15-8, 15-15
input .. 15-6
lcdstring ... 15-6, 15-8
Maker ... 15-2
Message field .. 15-6, 15-9, 15-10, 15-12, 15-13, 15-14
messageack.. 15-14, 15-15
output .. 15-6, 15-9
param field .. 15-6, 15-8, 15-10, 15-11, 15-12, 15-13
Parity ... 15-2, 15-3
port ... 15-4, 15-5, 15-6, 15-7, 15-9, 15-12, 15-15, 15-16
porttyperemote ... 15-6, 15-7
Protocol Editor .. 5-35
Protocol Viewer ... 4-1
remoteflag ... 15-7
remoteinput ... 15-6
remoteoutput... 15-6
remoteport .. 15-7
remotesequence ... 15-7
remotevar ... 15-7
sequence ... 15-6, 15-7, 15-14

19-6 Index

StopBits .. 15-2, 15-3
string... 15-6, 15-7, 15-8, 15-9
Supported ... 15-2, 15-3, 15-4, 15-5
timestring ... 15-6, 15-8, 15-10, 15-11, 15-12, 15-13, 15-15
trackstring .. 15-6, 15-8, 15-12
var ... 15-6
Version .. 15-2
word .. 15-7, 15-11, 15-13

R
Rear Panel

DMX Machine .. 13-2–13-3, 13-5
IO64 ... 12-1–12-3, 12-5–12-6
SMPTE Machine .. 14-2–14-3, 14-7
V16+ .. 8-2–8-3, 8-6, 8-14
V2+ .. 10-2–10-3, 10-5

relay coil
SMPTE Machine .. 14-13
V16+ .. 8-13
V2+ .. 10-11

Relay Outputs
IO64 ... 12-2, 12-8
V16+ ...8-2, 8-11

REMed Events ... 4-22
RS-232 ...7-3, 16-1
RS-422

Accessories ... 18-1
IO64 ... 12-2–12-4
V16+ ..8-3

RS-485 ..4-3
DMX Machine .. 13-4
IO64 ... 12-3–12-4
V16+ ... 8-2, 8-3–8-4

S
Script Wizard ..4-1, 4-36
Scripts

Chasing Timecode ... 4-26
Compiling.. 3-22, 4-28, 4-40, 15-9
Downloading ... 3-22, 4-28, 4-29, 4-31
Port Configuration ..4-5
Sequences.. 3-16, 3-18, 4-14, 4-20, 5-9, 6-3
Unit Address ...4-3, 7-7, 16-2, 16-3
Unit Type ...4-3, 4-36, 7-7

Sequence Editing
Copying, Cutting, and Pasting Sequences ... 4-15
Indentation ... 4-16
Index Number ... 4-6, 4-7, 4-14, 4-20, 4-21, 5-16
Inserting and Deleting Sequences ... 4-15
Looping Enabled/Disabled ... 4-17
Pause Trigger .. 4-20
Reset Trigger ... 4-20
Restart Enabled/Disabled .. 4-17
Restart Lockout.. 3-18, 4-17, 6-21
Start Trigger ... 3-17, 4-18, 4-20, 6-15, 6-16, 6-17, 6-19, 6-22, 6-25, 7-11, 7-15
Stop Trigger ... 4-19
Timecode Trigger/Chase ... 4-17

Serial Ports ...3-11, 4-3, 5-1, 5-17, 7-2, 7-9, 7-11, 8-1–8-2, 17-1
DMX Machine .. 13-3

Index 7

IO64 .. 12-3
SMPTE Machine .. 14-2–14-3
V16+ .. 8-3–8-4
V2+ .. 10-2–10-3

Show Memory .. 8-1–8-2
Accessories .. 18-1
DMX Machine ... 13-2
IO64 .. 12-2
V16+ ... 8-16
V2+ ... 10-2

Size and Weight
IO64 .. 12-2
SMPTE Machine ... 14-2
V16+ ... 8-2
V2+ ... 10-2

SMPTE 4-1, 4-11, 4-12, 4-16, 4-17, 4-29, 4-31, 4-38, 5-2, 5-23, 5-24, 5-31, 5-33, 5-34, 5-35, 7-6
Frame Rate ... 4-10
Generate/Read Options .. 4-10
Generation ...4-11, 4-13, 5-2, 5-23, 5-24
Triggering .. 4-9

SMPTE Machine 2-4, 4-1, 4-9, 4-10, 4-11, 4-12, 4-17, 4-29, 4-31, 4-32, 5-2, 5-23, 7-6, 13-1, 14-1
snubber

IO64 .. 12-9
SMPTE Machine ... 14-11, 14-13
V16+ ... 8-13
V2+ ...10-9, 10-11

solenoid
IO64 .. 12-9
SMPTE Machine ... 14-13
V16+ ... 8-13
V2+ ... 10-11

Sony
cables ... 18-2

Sync Termination
SMPTE Machine ... 14-14
V16+ ... 8-14

T
Technical Support

E-Mail ... 1-3
Software/Firmware Updates .. 1-3
Telephone ... 1-3

terminating resistor
DMX Machine ... 13-4
SMPTE Machine ... 14-14
V16+ ... 8-14

terminator ... 14-14
V16+ .. 8-4, 8-14

Time Calculator .. 4-1, 4-38
Time Counter .. 6-2
Timecode .. 4-17

U
User-Defined Tools ... 4-42

V
video sync

SMPTE Machine ...14-6, 14-14

19-8 Index

V16+ .. 8-14
Video Sync ...5-33, 7-5
Voltage Inputs

SMPTE Machine ... 14-7–14-9
V16+ .. 8-6–8-8
V2+ ... 10-5–10-7

W
Weight ... 8-2, 10-2, 12-2, 13-2, 14-2
WinScript ...1-2

